

Politecnico di Bari May 21, 2019

Robotics and technologies for Rehabilitation and Sports Medicine

Stefano Mazzoleni, PhD The BioRobotics Institute, Scuola Superiore Sant'Anna Head, Bioengineering Rehabilitation Lab IEEE RAS Technical Committee on Rehabilitation and Assistive Robotics

Outline of the presentation

- BioRobotics and Bionics convergence
- Rehabilitation and Assistive Robotics
 - Upper limb robot-assisted therapy
 - Gait robot-assisted therapy
 - Precision orthopaedic surgery Precision orthopaedic rehab
 - RISE robotic wheelchair
- Biomechanics for Sports Medicine
- Lessons, new scenarios and challenges

Outline of the presentation

- BioRobotics and Bionics convergence
- Rehabilitation and Assistive Robotics
 - Upper limb robot-assisted therapy
 - Gait robot-assisted therapy
 - Precision orthopaedic surgery Precision orthopaedic rehab
 - RISE robotic wheelchair
- Sports biomechanics
- Lessons, new scenarios and challenges

From Swimming to Walking with a Salamander Robot Driven by a Spinal Cord Model

Auke Jan Ijspeert,¹* Alessandro Crespi,¹ Dimitri Ryczko,^{2,3} Jean-Marie Cabelguen^{2,3}

9 MARCH 2007 VOL 315 SCIENCE www.sciencemag.org

Science

Bionics & BioRobotics

Engineering

June 2015

Self-Organization, Embodiment, and **Biologically Inspired Robotics**

Rolf Pfeifer,1, Max Lungarella,1 Fumiya Iida1,2

SCIENCE VOL 318 16 NOVEMBER 2007

nature

evis & Comment | Research | Careers & Jobs | Current Issue | Archive | Au Volume 522 ssue 7555 News Feature

AUTURE I NEWS CENTURE

The Pentagon's gamble on brain implants, bionic limbs and combat exoskeletons

DARPA is making a big push into biological research --- but some scientists question whether lis high-risk approach can worl

Robotics in healthcare

No longer science fiction, robotics has emerged as a leading alternative for many healthcare applications

Dr. Daniel Kraft - "What's next in healthcare?"

Daniel Kraft is a physician-scientist, inventor and innovator. He is chair of the Medicine track for Singularity University and Executive Director for FutureMed, a program which explores convergent, exponentially developing technologies and their potential in biomedicine and healthcare

Joint Scuola Superiore Sant'Anna-Auxilium Vitae "Rehabilitation Bioengineering Laboratory"

Founded in 2011, the Scuola Superiore Sant'Anna - Auxilium Vitae Rehabilitation Centre (100 beds) **joint research laboratory** is composed by bioengineers, medical doctors and therapists

Clinical facility

 Cardio-respiratory Dept: 42 beds + 8 beds for assisted ventilation, monitoring and weaning

- Neurological Rehabilitation Unit. 35 beds
- Severe Traumatic Brain Injury Rehabilitation Unit: 15 beds

Research activities

 Design, development and validation of robotic systems for neurological rehabilitation (stroke, brain injury)

- **Tele-rehabilitation applications** (continuity of care from hospital to home/residential setting) for neurological and cardio-respiratory rehabilitation
- E-health solution for pulmonary rehabilitation (telemonitoring of physiological and respiratory parameters for ventilator-dependent patients)

Rehabilitation Bioengineering Laboratory

Robotic systems for upper limb motor therapy, technologies for e-health and sports biomechanics

Stefano Mazzoleni

Vi Do Elena Tran Battini

- n=450+ chronic and subacute post-stroke patients treated using robotic systems for upper limb rehabilitation (50+ at Versilia Hospital, 400+ at Auxilium Vitae Volterra): 2nd largest sample size worldwide
- Design and development of innovative robotic systems for upper limb rehabilitation
- Analysis of patient-ventilator interaction: development of software routine for automatic identification of respiratory asynchronies and assessment of patient effort (diaphragmatic EMG)
- Pulmonary telerehabilitation: low-cost and portable interactive videogames for home-based training
- Ventilatory response to exercise of n=90 elite soccer players

• S. Mazzoleni , P. Sale, M. Franceschini, S. Bigazzi, M.C. Carrozza, P. Dario, F. Posteraro. Effects of proximal and distal robot-assisted upper limb rehabilitation on chronic stroke recovery. *NeuroRehabilitation* 2013;33(1):33-9

• S. Mazzoleni, G. Montagnani, G. Vagheggini, L. Buono, F. Moretti, P. Dario, N. Ambrosino. Interactive videogame as rehabilitation tool of patients with chronic respiratory diseases: preliminary results of a feasibility study. *Respiratory Medicine* 2014; 108(10):1516–1524

Outline of the presentation

- BioRobotics and Bionics convergence
- Rehabilitation and Assistive Robotics
 - Upper limb robot-assisted therapy
 - Gait robot-assisted therapy
 - Precision orthopaedic surgery Precision orthopaedic rehab
 - RISE robotic wheelchair
- Sports biomechanics
- Lessons, new scenarios and challenges

Robotic devices for robot-assisted upper limb rehabilitation

Sant'Anna

STITUTO

DI BICHOBOTICA

REHAROB

Distal segments Bi-Manu-Track

Reha-Digit

GLOREHA

AMADEO

InMotion WRIST

Supinator Extender

RiceWrist-S

Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke (Review)

Mehrholz J, Pohl M, Platz T, Kugler J, Elsner B

Aims:

To assess the effects of electromechanical and robot-assisted arm training for improving arm function in people who have had a stroke.

Selection Criteria:

RCTs comparing electromechanical and robot-assisted arm training for recovery of arm function with other rehabilitation or placebo interventions, or no treatment, for people after stroke.

The MIT-MANUS

Centro Clinico di Riabilitazione Multispecialistico ABILITAZIONE AUXILIUM VITAE VOLTERRA di riferimento Regionale

Stefano Vi Do Mazzoleni Tran Elena Battini

F. Posteraro, S. Mazzoleni, S. Aliboni, *et al*. Robot-mediated therapy for paretic upper limb of chronic ptients following neurological injury. *J Rehabil Med*, 41: 976-980, 2009.

Patient's visual feedback

• A visual performance display appears following **five series of repetitions**. Based on the patient performance, the program either increases or decreases the assistance provided to reach the targets.

Display provides positive reinforcement to patient and encourages them to improve

PM1: Initiated Movement

PM2: Maximum Distance Along Target Axis

PM3: Active Power

PM4: Minimum jerk deviation (smoothness)

PM5: Distance from straight line (accuracy)

Rehabilitation Centre "Auxilium Vitae", Volterra, Italy **Robotic systems for upper limb motor therapy**

Shoulder/elbow robot (InMotion 2.0)

Wrist robot (InMotion 3.0)

Robotic systems for upper limb motor therapy in stroke patiens: Our experience with MIT-MANUS

Aim:

to present the effectiveness of robot mediated therapy on the paretic upper limb of an experimental group of 20 chronic stroke patients Participants :

A group of **20 subjects**, age range 33–69 (mean age 53.3, standard deviation (SD) 11.2).

Methods:

Robot-mediated therapy was delivered using the MIT-MANUS, a robot designed for clinical neurological application

Subject ID	Age, years	DH	Pathology	AS	CM	MSS-SE Admission	MSS-SE Discharge	MSS-SE Follow-up
401	61	R	Haemorrhagic stroke	R	3	9.6	14.2	13.4
402	45	R	Haemorrhagic stroke	R	3	10.4	12.0	12.0
403	62	R	Ischemic stroke	L	3	12.2	13.6	13.6
404	53	R	Haemorrhagic stroke	R	3	14.4	17.8	17.8
-01	63	R	Haemorrhagic stroke	L	4	15.4	16.2	16.0
405	64	R	Haemorrhagic stroke	R	3	10.6	12.2	11.4
406	57	R	Haemorrhagic stroke	L	3	8.8	11.4	11.4
02	47	R	Ischaemic stroke	L	1	1.6	1.6	1.6
407	57	R	Ischaemic stroke	R	4	10.4	11.6	11.6
408	62	R	Ischaemic stroke	L	3	12.8	16.2	14.4
409	69	R	Ischaemic stroke	L	1	13.6	13.6	13.6
-03	36	R	Brain injury	L	3	14.6	15.0	18.8
430	50	R	Brain injury	L	4	28.2	31.0	30.8
-04	63	R	Ischaemic stroke	L	3	13.8	16.2	18.2
411	34	R	Ischaemic stroke	R	3	9.2	11.2	11.0
412	41	R	Ischaemic stroke	L	3	17.6	20.2	18.0
05	68	R	Ischaemic stroke	L	1	7.2	10.4	7.2
413	52	R	Ischaemic stroke	R	3	13.2	13.6	13.4
06	50	R	Brain injury	L	3	10.2	11.8	11.8
414	33	R	Ischaemic stroke	1.	5	35.2	37.4	37.4

AS: affected side; CM: Chedoke-McMaster Stroke Assessment; DH: dominant hand; L: left; MSS-SE: Motor Status Score - Shoulder-Elhow; R: right

- Adaptive: system recognize subject's active movements even partially performed. It helps subject to terminate the initiated movement
- Planar movements
- Kinematical parameters at the end-effector

Robotic systems for upper limb rehabilitation in sroke patients: our experience with MIT-MANUS

Stefano

Mazzoleni

Vi Do Elena Battini

Tran

Table II. Outcome measures comparison at admission and discharge

	Admission		Discharge		
Evaluation	Median	IQR	Median	IQR	р
MSS-SE	12,800	10,350-14,800	14,200	11,950-16,600	< 0.001
MAS shoulder	8,000	4,750-11,250	4,000	2,750-6,625	< 0.001
MAS elbow	1,500	750-2,000	1,000	0-1,500	ns
ROM shoulder	440,000	408,750-566,250	550,000	477,500-647,500	< 0.001
ROM elbow	440,000	417,500-460,000	460,000	450,000-460,000	< 0.005

IQR: interquartile range; MAS: Modified Ashworth scale; MSS-SE: Motor Status Score - Shoulder-Elbow; ns: not significant; ROM: range of mation

Robotic systems for upper limb rehabilitation in sroke patients: our experience with MIT-MANUS

Stefano Vi Do Mazzoleni Tran

Elena Battini

FMA/ue

MI

	Pretreatment	Posttreatment	Change	Р	Pretreatment	Posttreatment	Change	Р
Chronic Subacute	36.52 ± 22.83 40.42 ± 26.35	44.20 ± 22.44 56.37 ± 26.25	7.68 ± 6.23 15.95 ± 12.49	.NS <0.05	$\begin{array}{c} 20.92 \pm 11.55 \\ 26.28 \pm 12.10 \end{array}$	$\begin{array}{c} 28.12 \pm 13.11 \\ 35.66 \pm 12.34 \end{array}$	$\begin{array}{c} 7.20 \pm 5.60 \\ 9.50 \pm 7.83 \end{array}$	<0.05 <0.05

F. Posteraro, S. Mazzoleni, S. Aliboni, *et al*. Robot-mediated therapy for paretic upper limb of chronic ptients following neurological injury. *J Rehabil Med*, 41: 976-980, 2009.

Upper Limb Robot-Assisted Therapy in Chronic and Subacute Stroke Patients Stefano Mazzoleni, PhD Patrizio Sale, MD Micol Tiboni, PT

A Kinematic Analysis

American Journal of Physical Medicine & Rehabilitation Copyright © 2013 by Lippincott Williams & Wilkins Stefano Mazzoleni, PhD Patrizio Sale, MD Micol Tiboni, PT Marco Franceschini, MD Maria Chiara Carrozza, PhD Federico Posteraro, MD

Subjects:

Aim:

to compare motor recovery in subacute and chronic stroke patients through clinical assessment scales and a set of kinematic parameters recorded using a robotic system

N=25 subacute stroke patients (25±7 days from acute event)

- Mean age: 70.2 ± 9.4 (range: 44-82 years)
- 16 M, 9 F

N=25 chronic stroke patients (>1 year from acute event)

- mean age: 58.8 \pm 13.1 (range: 31-86 years)
- 17 M, 8 F

N=20 healthy subjects

- mean age: 38.0 ± 9.8 (range: 27-60 years)
- 9 M, 11 F

Methods

Intervention:

- 5 sessions/week, 4 weeks
- Reaching exercises
- Each session:
 - 16 not assisted movements (Training test)
 - 16 not assisted movements (Record)
 - 3 series of 320 robot assisted movements (Adaptive)

Clinical outcome measures:

- Fugl-Meyer Assessment (FMA) Scale upper extremity section (max 66)
- Motricity index (MI) upper limb component (max 100)

Kinematic parameters

$$\overline{v_x} = \frac{1}{N} \sum_{k=1}^{N} v_x[k] \quad \overline{v_y} = \frac{1}{N} \sum_{k=1}^{N} v_y[k] \quad v_{xy} = \sqrt{\left(v_x[k]\right)^2 + \left(v_y[k]\right)^2} \quad \overline{v_{xy}} = \frac{1}{N} \sum_{k=1}^{N} v_{xy}[k]$$

- Smoothness
 - Number of Speed Peaks (NSP)
 - Speed Metric

$$SM = \frac{v_{xy}}{v_{peak}}$$

Acceleration Metric

$$AM = \frac{a_{xy}}{a_{peak}}$$

Onset Movement Time

Results: clinical outcome measures

FMA

	Pretreatment	Posttreatment	Change	Р
Chronic Subacute	20.92 ± 11.55 26.28 ± 12.10	28.12 ± 13.11 35.66 ± 12.34	7.20 ± 5.60 9.50 ± 7.83	<0.05 <0.05
oubleate	10.100 - 11.10	00.00 - 10.01	5.00 - 1.00	0.00

Motricity Index

	Pretreatment	Posttreatment	Change	Р
Chronic	36.52 ± 22.83	44.20 ± 22.44	7.68 ± 6.23	NS
Subacute	40.42 ± 26.35	56.37 ± 26.25	15.95 ± 12.49	< 0.05

Kinematic parameters (subacute patients)

	20 Sessions	30 Sessions	Р
v_{xy} , m/sec	0.10 ± 0.03	0.09 ± 0.03	NS
NSP	4.81 ± 4.10	4.52 ± 2.82	NS
SM	0.49 ± 0.07	0.50 ± 0.07	NS
AM	0.43 ± 0.06	0.45 ± 0.09	NS

S. Mazzoleni, P. Sale, M. Tiboni, et al. Upper limb robot-assisted therapy in chronic and subacute stroke patients: a kinematic analysis. American Journal of Physical and Medicine Rehabilitation, 2013.

Results: kinematic parameters

S. Mazzoleni, P. Sale, M. Tiboni, *et al.* Upper limb robot-assisted therapy in chronic and subacute stroke patients: a kinematic analysis. *American Journal of Physical and Medicine Rehabilitation*, 2013.

Results: movement onset time and correlation among measures

Correlations

	Chr	onic	Subacute		
	FM ^a	MI ^a	FM ^a	MI ^b	
AM	0.117 ^c	-0.236 ^c	-0.217 ^c	-0.208°	
NSP	-0.016^{c}	0.310 ^c	0.028^{c}	0.043	
SM	0.123 ^c	-0.337^{c}	-0.208^{c}	-0.130°	
$v_{\rm xy}$, mean	0.069^{c}	-0.159^{c}	-0.040^{c}	-0.078°	

"Pearson correlation coefficient.

^bSpearman rank correlation coefficient.

^cP > 0.05.

Robotic systems for upper limb rehabilitation in stroke patients

Mazzoleni

Aim:

to present the results of an innovative functional **assessment** method for the upper limb in hemiparetic subjects, based on the integrated analysis of biomechanical data and electroencephalographic signals (EEG) recorded during reaching movements.

Robotic therapy can contribute to upper limb motor recovery: does it stimulate (and lead to activation of) cortex areas in the damaged hemisphere?

Biosemi Active Two system (16 channels)

S. Mazzoleni, M. Coscia, G. Rossi, S. Aliboni, F. Posteraro, MC Carozza. Effects of an upper limb robot-mediated therapy on paretic upper limb in chronic hemiparetic subjects: a biomechanical and EEG-based approach for functional assessment. IEEE International Conference on Rehabilitation Robotics 2009.

Robotic systems for upper limb rehabilitation

Stefano Vi Do Mazzoleni Tran

Elena Battini

Methods:

- N=6 subjects took part in the experiment: N=4 healthy subjects (aged 24-48) and N=2 chronic hemiparetic subjects (aged 59-61): P01 left hemiparesis, P02 right hemiparesis
- In each session, subjects received 60 minutes of robot-mediated therapy, 5 sessions per week, 4 weeks

S. Mazzoleni, M. Coscia, G. Rossi, *et al*. Effects of an upper limb robot-mediated therapy on paretic upper limb in chronic hemiparetic subjects: a biomechanical and EEG-based approach for functional assessment. IEEE International Conference on Rehabilitation Robotics 2009.

Robotic systems for upper limb rehabilitation

Stefano

Mazzoleni

Vi Do Elena Tran Battini

S. Mazzoleni, M. Coscia, G. Rossi, *et al.* Effects of an upper limb robot-mediated therapy on paretic upper limb in chronic hemiparetic subjects: a biomechanical and EEG-based approach for functional assessment. IEEE International Conference on Rehabilitation Robotics 2009.

Robotic systems for upper limb rehabilitation in stroke patients EEG analysis: results

Vi Do

Tran

Stefano

Mazzoleni

Elena Battini

Predominant activation of controlateral cortex hemisphere in healthy subjects, whereas during the robotic therapy treatment, a gradual activation of ipsilateral hemisphere was observed in both hemiparetic subjects

S. Mazzoleni, M. Coscia, G. Rossi, *et al.* Effects of an upper limb robot-mediated therapy on paretic upper limb in chronic hemiparetic subjects: a biomechanical and EEG-based approach for functional assessment. IEEE International Conference on Rehabilitation Robotics 2009.

Robotic systems for upper limb rehabilitation in sroke patients: our experience with InMotion 2.0 Subacute stroke subjects

Stefano Mazzoleni

Elena Battini

Tran

Chronic stroke subjects characteristics

ID	Age	DH	AS	СМ	MSS-SE Admission	MSS-SE Discharge
S09	61	R	R	3	9.6	14.2
S10	45	R	R	3	10.4	12.0
S11	53	R	R	3	14.4	17.8
S12	64	R	R	3	10.6	12.2
S13	57	R	R	4	10.4	11.6
S14	34	R	R	3	9.2	11.2
S15	52	R	R	3	13.2	13.6
S16	62	R	L	3	12.8	16.2
S17	57	R	L	3	8.8	11.4
S18	62	R	L	- 3	12.2	13.6
S19	36	R	L	3	14.6	15.0
S20	33	R	L	5	35.2	37.4
S21	50	R	L	4	28.2	31.0
S22	41	R	L	3	17.6	20.2
S23	63	R	L	4	15.4	16.2
S24	50	R	L	3	10.2	11.8
S25	63	R	L	3	13.8	16.2

is to propose a **new methodology** in order to **evaluate the** difference of recovery mechanisms in stroke subjects in subacute

and chronic phase by

using the trend, before and after the upper limb robot-aided training, of two biomechanical parameters, namely velocity and force.

Participants:

Aim:

- **N=8 subacute** stroke subjects, age range 18-82 (mean age $63.0 \pm$ 21.3) years. Time from the acute event: 25 ± 7 days.
- N=17 chronic stroke subjects, age range 33-66 (mean age: 51.9 \pm 0.7) years. Time from the acute event: at least 1 year.

Interventions:

- Each subject was asked to perform goal-directed, planar reaching tasks, moving from the centre target to each of 8 peripheral targets.
- Five robot-aided sessions per week for 6 weeks.

S. Mazzoleni, L. Puzzolante, L. Zollo, P.Dario and F. Posteraro. Mechanisms of motor recovery in chronic and subacute Stroke patients following a robot-aided training. IEEE TRANSACTIONS ON HAPTICS, 7(2), 2014.

ID	Age	DH	AS	СМ	FM Admission	FM Discharge
S01	44	R	R	2	20.0	29.0
S02	70	R	R	2	19.0	47.0
503	77	R	R	4	40.0	47.0
504	18	R	R	2	15.0	25.0
S05	82	R	L	2	21.0	41.0
S06	70	R	L	5	21.0	28.0
S07	72	R	L	4	36.0	49.0
S08	71	R	L	2	18.0	25.0
6	linical	Outco		oasur		

characteristics

Motor Status Scale shoulder and elbow (MSS-SE) - chronic

• Fugl-Meyer (FM)-subacute

Biomechanical Parameters: Mean Forces

Mean speed

patients

Robotic systems for upper limb rehabilitation in sroke patients: our experience with InMotion 2.0

Vi Do

Stefano Mazzoleni Tran

Elena Battini

Clinical outcome measures

	FM (subacute)	MSS-SE (chronic)
PRE	23.75 ± 9.07	14.50 ± 7.02
POST	36.37 ± 10.62	16.56 ± 7.18
Change	12.62 ± 7.61	2.06 ± 1.12
р	< 0.05	< 0.001

Mean Force before and after the robotic-aided training in direction Nt

Mean Force before and after the robotic-aided training

Mean Speed

S. Mazzoleni, L. Puzzolante, L. Zollo, P.Dario and F. Posteraro. Mechanisms of motor recovery in chronic and subacute Stroke patients following a robot-aided training. IEEE TRANSACTIONS ON HAPTICS, 7(2), 2014.

Aim:

to evaluate the effects of upper limb robot-assisted rehabilitation on motor recovery in stroke patients who underwent a treatment based on **a haptic device.**

Methods:

• N=23 subacute stroke patients (time from acute event: 14-35 days), mean age: 67.3 \pm 11.7, 10 M, 13 F

- N=16 chronic stroke patients (time from acute event: 12-84 months), mean age: 66.9 ± 9.6 , 10 M, 6 F
- N=13 healthy subjects, mean age: 43.9 \pm 8.4, 8 M, 15 F

ID	Age	Gender	Type of lesion	Time since acute event (day)	Number of sessions	Chedoke- McMaster Stroke Assessment
1	74	F	I	17.00	26	4
2	74	М	E	24.00	24	5
3	72	F	1	35.00	19	5
4	72	М	E	17.00	25	5
5	69	F	Н	33.00	25	6
6	69	F	Н	34.00	23	6
7	84	F	I	28.00	19	2
8	45	М	1	35.00	21	5
9	69	F	1	22.00	36	5
10	76	F	1	18.00	24	6
11	75	М	I	24.00	30	5
12	61	F	I	14.00	27	4
13	59	М	I	24.00	29	4
14	63	М	1	26.00	24	4
15	53	F	1	60.00	23	5
16	79	М	1	14.00	21	6
17	46	М	Н	17.00	25	5
18	50	F	I	29.00	28	2
19	64	F	I	30.00	22	6
20	81	F	I	20.00	28	4
21	79	F	1	30.00	29	5
22	53	М	1	35.00	23	6
23	81	М	1	26.00	26	6

	Age	Gender	Type of lesion	Time since acute event (months)	Number of sessions	Chedoke-McMaster Stroke Assessment
1	66	М	I	73.27	19	4
2	60	F	I.	15.97	19	2
3	72	М	I.	15.03	24	2
4	75	F	н	43.27	23	5
5	69	М	I.	42.00	21	3
6	74	М	I.	57.00	23	3
7	67	М	I.	84.93	20	5
8	73	F	н	178.63	19	2
9	58	М	I. I.	16.77	20	4
10	75	F	н	50.00	20	5
11	68	F	1 I	87.60	19	4
12	64	М	1 I	13.63	32	4
13	54	М	l. I	12.03	21	6
14	78	М	l. I	18.07	21	3
15	42	М	I. I.	18.97	27	1
	76	-			40	2

<u>S. Mazzoleni</u>, E. Battini, R. Crecchi, P. Dario, F. Posteraro. "Upper limb robot-assisted therapy in subacute and chronic stroke patients using an innovative end-effector haptic device: a pilot study." NeuroRehabilitation 2018 (42), 43-52.

Elena

Battini

Stefano Mazzoleni

Methods:

• The CE-marked MOTORE (Mobile robot for upper limb neurOrtho Rehabilitation, Humanware Srl, Pisa, Italy)/Armotion system was used in this study.

- 10 batteries (11.1 V)
- A **3-axes load cell** embedded in the handle is used to record patient-robot interaction forces

• 3 omnidirectional wheels (Konylak Coorporation Tranwheels) which are actuated by three DC motors positioned at 120 degrees and based on the Killough's kinematical model

- an **absolute localization** system based on odometry from motor encoders and an optical sensor based on **Anoto® technology**
- Bluetooth connection

Flena

Battini

Stefano Mazzoleni

Different exercises characterized by (i) visual and haptic cues, (ii) graphical scenario and (iii) performance parameters.

<u>S. Mazzoleni</u>, E. Battini, R. Crecchi, P. Dario, F. Posteraro. "Upper limb robot-assisted therapy in subacute and chronic stroke patients using an innovative end-effector haptic device: a pilot study." NeuroRehabilitation 2018 (42), 43-52.

Active, assist-as-needed and passive control modalities

Clinical Assessment

- Modified Ashworth Scale (MAS)
- Fugl-Meyer Scale upper extremity section (FM/ue)
- Motricity Index (MI)
- Box and Block Test (B&B)
- Medical Research Council Scale (MRC)
- Modified Barthel Index (mBI)

Kinematic parameters

- mean speed $v_{xy} = \frac{\sum_{i=1}^{5} \sqrt[2]{v_{xi}^{2} + v_{yi}^{2}}}{5}$
- maximum speed;
- mean time;
- path length (total length: 768 mm);
- mean error, defined as the minimum distance between the
- ideal and the actual patient trajectory;

• *jerk parameters*
$$J = \sqrt[2]{0.5 * \int_{t_{start}}^{t_{end}} jerk^2(t) dt * \frac{duration^5}{length^2}}$$

• mean force
$$F_{xy} = \frac{\sum_{i=1}^{5} \sqrt[2]{F_{xi}^2 + F_{yi}^2}}{5}$$

<u>S. Mazzoleni</u>, E. Battini, R. Crecchi, P. Dario, F. Posteraro. "Upper limb robot-assisted therapy in subacute and chronic stroke patients using an innovative end-effector haptic device: a pilot study." NeuroRehabilitation 2018 (42), 43-52.

Statistical analysis

The **Wilcoxon signed rank test** was used to compare differences between clinical outcome measures and kinematic parameters. Significance was set at p < 0.05

Stefano Elena Mazzoleni Battini

- *mean energy expenditure,* representing the mean work carried out by the patient to executing the first five laps;
- *active patient-robot interaction percentage,* representing the percentage of elapsed time under the active modality.

	TO	T1	Change	
FM/ue				
Subacute	37.57 ± 17.96	$52.00 \pm 13.39^{**}$	13.82 ± 11.84	
Chronic	26.63 ± 16.55	$33.87 \pm 19.66^{**}$	7.25 ± 4.25	
MAS-shoulder				
Subacute	0.21 ± 0.32	0.13 ± 0.45	-0.09 ± 0.42	
Chronic	1.44 ± 1.09	1.06 ± 0.85	-0.38 ± 0.62	0.00
MAS-elbow				0.25
Subacute	0.69 ± 0.97	0.30 ± 0.55	-0.44 ± 0.89	0.20 - T
Chronic	2.19 ± 1.05	$1.50 \pm 0.73^{*}$	-0.69 ± 0.70	
MAS-wrist				0.15 -
Subacute	0.26 ± 0.54	0.08 ± 0.29	-0.20 ± 0.49	ž T
Chronic	1.88 ± 1.45	$1.13 \pm 1.02^*$	-0.75 ± 1.06	E 0.10 -
MI				
Subacute	60.04 ± 15.67	$77.88 \pm 14.66^{**}$	17.73 ± 11.35	0.05 -
Chronic	51.13 ± 21.25	$58.94 \pm 22.16^*$	7.81 ± 9.38	100
MRC-shoulder				0.00 - Maxuta
Subacute	60.04 ± 15.67	77.87 ± 14.66	4.18 ± 3.84	
Chronic	13.50 ± 6.78	15.31 ± 7.12	1.81 ± 1.94	35.00
MRC-elbow				33,00
Subacute	16.61 ± 6.13	20.91 ± 5.73	1.31 ± 1.32	30.00
Chronic	5.25 ± 2.82	6.25 ± 2.70	1.00 ± 0.82	25.00 -
MRC-wrist				20.00
Subacute	6.52 ± 1.90	7.83 ± 1.67	1.40 ± 1.71	3
Chronic	3.56 ± 2.80	4.38 ± 2.92	0.81 ± 1.42	15.00
B&B				10.00 -
Subacute	10.00 ± 9.26	23.13 ± 12.41 **	12.59 ± 10.69	5.00
Chronic	10.13 ± 10.59	$14.75 \pm 13.89^{**}$	4.63 ± 4.87	0.00
MBI		an the work of the second of		0.00
Subacute	44.43 ± 22.49	$77.91 \pm 25.73^{**}$	33.50 ± 18.75	
Chronic	85.63 ± 11.78	87.38 ± 10.79	1.75 ± 4.31	

Stefano Mazzoleni I

<u>S. Mazzoleni</u>, E. Battini, R. Crecchi, P. Dario, F. Posteraro. "Upper limb robot-assisted therapy in subacute and chronic stroke patients using an innovative end-effector haptic device: a pilot study." NeuroRehabilitation 2018 (42), 43-52.

S. Mazzoleni, E. Battini, R. Crecchi, P. Dario and F. Posteraro. Upper limb robot-assisted therapy in subacute and chronic stroke patients using an innovative end-effector haptic device: a pilot study. *NeuroRehabilitation*, 42, 43-52, 2018.

Elena Battini

Stefano

Mazzoleni

Centro Clinico di Riabilitazione Multispecialistico ILABILITAZIONE AUXILIUM VITÆ VOLTERRA di riferimento Regionale

Interemispheric competition

Balanced cerebral emispheres through callosum connections by interemispheric

mutual inhibition

Cerebrovascular accident

Reduced inhibitory activity in the affected hemisphere due to:

- Lesion
- Abnormal transcallosum inhibition

Large functional impact and correlation with motor recovery

Explanation of increased excitability of non-affected hemisphere:

Adaptation to lesion

New rehabilitation strategies

Determinant factor in pathophysiology of impairment

(Schlaug et al., Arch Neurol. 2008)

Combined robot-assisted wrist rehabilitation and transcranial Direct Current Stimulation (tDCS) in subacute stroke

Study design: RCT "sham controlled" Patients: n=40 (age 18-79 yrs) stroke survivors with upper limb impairment (alfa<0.05; power=0.80) Treatment: 5 sessions/week, 6 weeks Follow-up: 6 months

Study Group: wrist robot + tDCS (anodal, 20 min, electrodes 35 cm², 2 mA, anodal electrode placed over the presumed hand area of lesioned hemisphere, and cathodal electrode above contralateral orbit)

Control Group: wrist robot + tDCS (*sham*)

Inclusion criteria: (i) persons affected by first supratentorial stroke, whose onset time is 25±7 days; (ii) upper limb hemiparesis; (iii) cognitive and speech abilities sufficient to understand instructions and to provide informed consent; (iv) absence of intense pain due to passive wrist mobilization assessed by VAS < 3 (range 0-10); (v) ability to provide written informed consent

Exclusion criteria: (i) previous epilepsy seizures, (ii) severe EEG abnormalities, (iii) previous neurosurgery interventions including metallic elements, (iv) anticonvulsant medications, (v) inability to keep sitting posture and (vi) other current severe medical problems

Characteristics	Chronic group (CG) (n=20)	Subacute group (SG) (n=20)	p (two groups)
Age (range)	62.90 ± 8.88	66.40 ± 16.20	0.332 ^b
	(38-78)	(24-88)	0.552
Gender (F/M)	6/14	11/9	0.200^{a}
Hemiparesis (R/L)	9/11	12/8	0.527^{a}
Dominant side (R/L)	19/1	19/1	1.000^{a}
Hemiparesis on domint side (Yes/No)	8/12	11/9	0.527 ^a
Pathology (i/h)	14/6	17/3	0.451 ^a
Chedoke-McMaster	3.90 ± 1.25	4.95 ± 1.05	0.017 ^b
score (range)	(2-6)	(3-6)	
FM/w	4.75 ± 3.23	4.45 ± 3.27	0.860 ^b
FM/se	22.10 ± 10.13	22.20 ± 8.85	0.985 ^b
FM/ue	37.85 ± 19.33	35.40 ± 16.92	0.571 ^b
MAS/w	1.30 ± 1.30	1.45 ± 2.33	0.893 ^b
MI	59.25 ± 16.10	59.55 ± 13.07	1.000 ^b
B&B	18.45 ± 13.38	13.20 ± 10.96	0.245 ^b

S. Mazzoleni, V. D. Tran, P.Dario and F. Posteraro. Wrist robot-assisted rehabilitation treatment in subacute and chronic stroke patients: from distal-to-proximal motor recovery. IEEE Transaction on Neural Systems and Rehabilitation Engineering. 26(9), 1889-1896, 2018.

	Pre-Treatment	Post-Treatment	р		Pre-Treatment	Post-Treatment	р
FM/w	3.65 ± 2.8	6.45 ± 3.39	<0.001 ^b	FM/w	4.47 ± 3.01	6.74 ± 3.16	<0.001 ^b
FM/se	20.40 ± 10.51	26.9 ± 9.39	<0.001ª	FM/se	21.37 ± 8.06	27.63 ± 6.60	<0.001ª
FM/ue	34.20 ± 18.35	46.20 ± 19.36	<0.001 ^b	FM/ue	34.11 ± 15.48	49.84 ± 15.38	<0.001ª
MAS/w	1.1 ± 1.86	0.90 ± 1.52	0.313 ^b	MAS/w	1.58 ± 2.34	1.21 ± 2.42	0.031 ^b
MI	55.75 ± 25.22	71.35 ± 18.75	<0.001ª	MI	59.68 ± 12.15	73.79 ±14.16	<0.001 ^b
B&B	15.95 ± 12.10	24.35 ± 16.37	0.002ª	B&B	12.32 ±10.41	20.63 ± 10.26	<0.001ª

Experimental Group (EG)

Control Group (CG)

^a: t-test, ^b: Mann-Whitney rank sum test

Wrist robot-assisted rehabilitation and tDCS in subacute stroke patients *: t-test, b: Mann-Whitney rank sum test

	Baseline			Change after treatment			
	CG (mean ± SD)	EG (mean ± SD)	р	CG (mean ± SD)	EG (mean ± SD)	р	
FM/w	4.47 ± 3.01	3.65 ± 2.8	0.381ª	2.26 ± 2.42	2.8 ± 2.12	0.311 ^b	
FM/se	21.37 ± 8.06	20.40 ± 10.51	0.749ª	6.26 ± 6.51	6.50 ± 5.18	0.900ª	
FM/ue	34.11 ± 15.48	34.20 ± 18.35	0.986ª	15.74 ± 13.75	12.00 ± 8.5	0.536 ^b	
MAS/w	1.58 ± 2.34	1.1 ± 1.86	0.471 ^b	-0.37 ± 0.60	-0.20 ± 0.77	0.532 ^b	
MI	59.68 ± 12.15	55.75 ± 25.22	0.843 ^b	14.11 ± 10.66	15.60 ± 9.74	0.650 ^a	
B&B	12.32 ± 10.41	15.95 ± 12.10	0.322ª	8.32 ± 8.56	8.40 ± 10.24	0.978ª	

	FM/w	FM/se	FM/ue	MAS/w	MI	B&B
FM/w	1	0.0321	0.673*	-0.268	0.282	0.252
FM/se	0.799*	1	0.665*	0.009	-0.023	-0.037
FM/ue	0.680*	0.784*	1	-0.308	0.404	0.257
MAS/w	-0.011	0.008	-0.007	1	-0.391	0.053
MI	0.707*	0.713*	0.622*	0.114	1	0.552*
B&B	0.401	0.513*	0.386	0.133	0.662*	1

Mean velocity

Robot-assisted rehabilitation: novelty of results

- Innovative assessment methods based on (i) interaction forces (Mazzoleni et al., IEEE Trans Haptics 2013) and angular deviations from mean effort at the robot's end-effector in chronic post-stroke patients (Mazzoleni et al., Applied Bionics and Biomechanics, 2011) and (ii) kinematic parameters in subacute post-stroke patients (Mazzoleni et al., Am J Phys Med Rehab 2013)
- Proof of effectiveness of robot-assisted treatment in chronic stroke patients (*Posteraro et al., J Rehab Med 2009*) using proximal/distal approach (*Mazzoleni et al., Neurorehab 2013*)

Flena

Battini

Stefano Mazzoleni

Aim:

 to propose a quantitative and qualitative assessment of upper limb motor performance by means of a mechatronic device in patients who underwent a surgical procedure for ligament reconstruction following ACJ dislocation

Methods:

• Five patients (men, mean age: 40 \pm 12 years, range: 20-51 years) with acute Rockwood type III and V ACJ dislocation

Patient ID	Age	Surgery date	FU time (months)	DS	IS	Injury cause	Classification (type)	CM S IS	CMS /IS
1	51	28/05/2012	36	R	L	accident	V	95	100
2	45	27/08/2010	55	R	R	sport	111	98	100
3	20	30/05/2012	34	L	R	sport	V	92	100
4	39	20/07/2011	44	R	R	accident	111	98	100
5	45	15/04/2011	48	R	L	sport	III	100	100

to Chrico d Russillation Publication Statements a reference Registrate Stefano

Elena Battini

Mazzoleni

The **ULTRA** (Upper Limb TRAcker, Humanware Srl, Pisa, Italy) system, a **passive end-effector mechatronic** device was used in this study. It is an articulated mechanical structure formed by 7 rotoidal joints corresponding to 7 Degrees Of Freedom (DOFs) divided as follows: 2 DOFs in correspondence of the shoulder joint, 1 DOF in correspondence of the elbow joint and 4 DOFs in correspondence of the wrist joint.

ILITAZIONE AUXILIUM VITAE VOLTER Mazzoleni

Stefano

Assessment:

- Constant-Murley Score (CMS)
- Final Mean Time (FMT)
- Mean Distance (MD)
- Speed Metric (SM)
- Final Mean Movement Deviation (FMMD)
- Number of Peaks in Speeds Profile (NSP)
- $NRS = \frac{v_{xy_{\text{max}}} v_{xy}}{(2)}$ Normalized Reaching Speed (NRS)
- Normalized jerk

CMS: scale based on a 100-point scoring system that provides a global score based on weighted measures of physical impairments ROM and strength

The CMS is divided into four domains: pain (15 points), activities of daily living (20 points), strength (25 points) and range of motion (40 points): the higher the score, the higher the quality of the function

Stefano Mazzoleni

Elena Battini

Results

	IPA	AB	BC	CD	DE	EF
FMMD	0.34	0.84	0.48	0.34	0.77	0.26
FMT	0.07	0.15	0.41	0.95	0.19	0.12
MD	NC	0.19	0.45	0.79	0.38	0.19
NSP	NC	0.53	0.19	0.22	0.25	0.63
SM	NC	0.91	0.80	0.58	0.17	0.79
NRS	NC	0.35	0.93	0.71	0.69	0.80
Normalized Jerk	NC	0.37	0.36	0.89	0.06	0.49

Elena

Battini

Stefano Mazzoleni

Elena

Battini

Stefano Mazzoleni

<u>S. Mazzoleni</u>, E. Battini, M.Galgani, M. Tinucci, P. Dario and G. Calvosa. Motion Tracking for Quantitative and Qualitative Assessment of Upper Limb Movements Following Acromioclavicular Joint Ligament Reconstruction: A pilot Study The Open Biomedical Engineering Journal. 12, 135-146, 2018.

Stefano Mazzoleni

Centro Clinico di Riabilitazione Multispecialistico ABILITAZIONE AUXILIUM VITAE VOLTERR.

Battini

Elena

Battini

Stefano Mazzoleni

Normalized jerk

Biomechanical model of the musculoskeletal systems

Stefano Vi Do Mazzoleni Tran **Joint Kinematics** Muscle Activations / EMG Inter Rentere gluteus medius simulated activation ---- matching EffCi speed matched KMO inspection of all DOOR Joint Moments colular coloniation for a lote **Muscle Forces Ground Reaction Forces Joint Reaction Forces**

The **biomechanical model** is applied to musculoskeletal rehabilitation to study:

- Kinematics properties of the human joint system.
- Mechanical and biological factors affecting the human skeletal system.
- Muscle responses to the external forces and perturbations.

Biomechanical model of the musculoskeletal systems

Stefano Vi Do Mazzoleni Tran

- Develop a model of the upper limb with acromioclavicular joint ligaments to:
 - Estimate motion kinematics of the shoulder movement with different types of Rockwood acromioclavicular dislocation
 - Evaluate the recovery of the patient after acromioclavicular ligaments surgery
- Direct application of musculoskeletal models to rehabilitation

Upper limb biomechanical model

Vi Do

Tran

Stefano Mazzoleni

- The model was developed by using OpenSim platform from the dynamic model of upper limb
- The trapezius muscle was added to control the moving, rotating, and stabilizing the scapula
- The acromioclavicular joint ligaments are modelled

Katherine R. Saul, Xiao Hu, Craig M. Goehler, Meghan E. Vidt, Melissa Daly, Anca Velisar & Wendy M. Murray (2014): Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model, Computer Methods in Biomechanics and Biomedical Engineering

The OpenSim muscle-driven simulation workflow

The body landmarks to be recorded:

- Torso: acromion, clavicular, C7.
- Right upper arm: bicep front, elbow lateral, elbow medial.
- Right lower arm: wrist lateral, wrist medial and hand

The subject performed a "hand to mouth" movement five times with a self-paced velocity

The movements were recorded by a motion capture system (SMART-DT, BTS Bioengineering Corp., Milano, Italy)

Hand-to-mouth movement

Trajectories of DOFs angles during a representative trial

Contribution of muscles to elbow moment (BIClong: biceps brachii long head, BICshort: biceps brachii short head, BRD: brachioradialis)

Outline of the presentation

- BioRobotics and Bionics convergence
- Rehabilitation and Assistive Robotics
 - Upper limb robot-assisted therapy
 - Gait robot-assisted therapy
 - Precision orthopaedic surgery Precision orthopaedic rehab
 - RISE robotic wheelchair
- Sports biomechanics
- Lessons, new scenarios and challenges

Robot-assisted gait rehabilitation for Spinal Cord Injured (SCI) patients

Stefano Mazzoleni

Robot-assisted treadmill gait training

Robot-assisted overground gait training

FES-cycling

FES during walking

Elena

Battini

Robot-assisted rehabilitation for SCI patients: FES-cycling

Background

The **loss of mobility** following spinal cord injury (SCI) negatively affects the health status of life of patients. In addition other physical complications, such as **muscular atrophy**, **muscular spasticity**, **reduction of cardio-respiratory capacity and pain**, often occur as well.

The improvement of bone, muscular and joint trophism and the reduction of spastic hypertone represent relevant aims to be achieved during SCI rehabilitation.

The Functional Electrical Stimulation (FES) causes an electrically driven contraction, that differs from a physiological contraction in terms of action potential and in terms of number and type of recruited motor units, which progresses from large to small. (reference FES)

The benefits of FES were demonstrated since the 80s: improvements obtained in cardiovascular and respiratory functions (R. Martin *et al.* 2012), body composition , muscle mass , bone mass and quality of life .

Aim

to use FES to activate pedaling on cycle-ergometer and analyse the effects of this technique for a rehabilitation training in SCI persons

S. Mazzoleni, G. Stampacchia., A. Gerini, T. Tombini, MC Carrozza. FES-cycling training in Spinal Cord Injured patient. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:5339-41.

R. Martin, C. Sadowksy, K, Obst, *et al.* Functional electrical stimulation in spinal cord injury: from theory to practice. *Top Spinal Cord Inj Rehabil*, 18(1): 20-33, 2012.

S. Mazzoleni,. E. Battini, A. Rusitci, and G. Stampacchia. An integrated gait rehabilitation training based on Functional Electrical Stimulation cycling and overground robotic exoskeleton in complete spinal cord injury patients: preliminary results. 2017 International Conference on Rehabilitation Robotics (ICORR) 2017.

Robot-assisted rehabilitation for SCI patients: FES-cycling approach

Methods

Five subjects complete and incomplete spinal cord injured (SCI) subjects (mean age 43.0±11.8, four men and one woman) 20 sessions three times per week.

Clinical assessment

was carried out before starting the treatment (T0), at mid-treatment (T1), after 10 sessions, and at the end of the treatment (T2).

- ASIA,
- SCIM,
- Modified Ashworth Scale (MAS)
- 4-point Spasms Scale evaluati
- thigh circumference at 5 (A), 10 (B) and 15 (C) cm from the knee cap upper limit.

Stefano Mazzoleni Elena Battini

Robot-assisted rehabilitation for SCI patients: FES-cycling approach

Elena

Battini

Stefano Mazzoleni

Results: thigh circumference

S. Mazzoleni, E. Battini, A. Rusitci, and G. Stampacchia. An integrated gait rehabilitation training based on Functional Electrical Stimulation cycling and overground robotic exoskeleton in complete spinal cord injury patients: preliminary results. 2017 International Conference on Rehabilitation Robotics (ICORR) 2017.

Aims:

- to propose and validate a novel effectiveness index (EI) based on the mechanical power recorded during the FES-cycling training;
- to analyse the energy expenditure (EE) during the entire rehabilitation period in a group of complete SCI patients by using the power recorded during the rehabilitation session by using only the FES-cycling system.

Methods:

- 24 chronic complete SCI patients (20 men, mean age: 39.42 ± 11.26, range: 22-66, n=14 ASIA A, n=10 ASIA B)
- N=20 sessions of FES-cycling training
- 8 healthy subjects for comparison purposes

Inclusion criteria

- age ≥ 18;
- motor complete spinal cord injury, both traumatic and not-traumatic.

Exclusions criteria

- severe joint limitations that prevent the use of FES-cycling;
- total denervation that prevents the use of FES-cycling.

ID	Gender	Age	ASIA	level	lesion	SCIM
P1	F	26	A	D8	Т	67
P2	М	39	A I	D5	Т	73
P 3	М	22	В	C6	T	48
P4	М	24	С	C6	Т	52
P5	М	48	A	D12	Т	72
P6	F	42	В	D5	Т	57
P 7	M	40	A	D3	T	73
P8	М	47	в	D10	Т	72
P9	М	26	А	D12	Т	66
P10	М	48	A	D5	Т	67
P11	М	43	В	D8	Т	61
P12	М	26	в	C 7	Т	62
P13	М	29	В	D12	T	71
P14	F	46	А	D9	Т	61
P15	М	25	A	D12	Т	64
P16	М	46	A	D6	Т	76
P17	F	27	В	T12	NT	23
P18	М	44	А	L1	Т	79
P19	M	40	В	T4	Т	60
P20	М	43	В	C6	NT	34
P21	М	49	В	D11	Т	77
P22	М	45	А	D6	Т	54
P23	М	62	A	D6	NT	22
P24	М	59	В	T12	Т	72

Assessment otucome measures:

- American Spinal Injury Association scale (ASIA)
- Spinal Cord Independence Measure Scale (SCIM)
- Penn Spasms Frequency Scale (PSFS)
- Modified Ashworth Scale (MAS)
- Numerical Rating Scale (NRS)
- Power generated
- Energy expenditure $EI(\%) = \left(\frac{P_{\text{max}} P_{\text{final}}}{P_{\text{max}}}\right) x100$
- Efficiency Index

$$EI(\%) = \left(-\frac{1}{2}\right)$$

Battini

Stefano Mazzoleni

20 FES-cycling training sessions

FES-cycling parameters:

- (i) stimulation frequency f=50 Hz,
- (ii) square biphasic alternated wave,
- (iii) duration of pulse (pulse width) of 500 $\mu s,$
- (iv) duty cycle (e.g., the ratio of the time when the stimulation wave is active and the time when it is inactive) of 50%.

The current amplitude represents the delivered stimulation intensity (FES-cycling range amplitude: 0-140 mA).

The target speed is the objective speed set by the therapist (range: 10-70 rpm) and it represents the speed to be reached during the session. In this study the target speed was set at 35 rpm.

The resistance level represents the resistance opposed by the FES-cycling motor. In this study this value was constant and equal to 5.00 Nm.

Battini

Stefano Mazzoleni

Data interpolation was performed using custom routines implemented under the Matlab environment (The MathWorks Inc., Natick, USA). Three different interpolation functions and different orders (n) were tested:

(i) polynomial ($3 \le n \le 7$),

(ii) sum of sine $(3 \le n \le 5)$

(iii) exponential functions as sum function of two terms.

Туре	n	TO	T1	T2
	3	0.379	0.319	0.346
Polynomíal	4	0.338	0.333	0.416
	5	0.378	0.312	0.346
	6	0.404	0.333	0.387
	7	0.414	0.325	0.405
Sum of sine	3	0.268	0.244	0.269
	4	0.357	0.322	0.329
	5	0.333	0.313	0.366
Exponential	2	0.341	0.304	0.309

Battini

Stefano Mazzoleni

Unpublished data

Results

Stefano Mazzoleni

Unpublished data

Results

Stefano Mazzoleni

Elena Battini

Robot-assisted treadmill gait rehabilitation for SCI patients: Surface EMG measurements and analysis

	SC	IM	WISCI-II		
ID	Pre- training	Post- training	Pre- training	Post- training	
1 (SCI)	13	25	0	8	
2 (SCI)	34	37	0	0	
3 (MS)	11	21	0	7	
4 (MS)	76	78	14	16	
5 (MS)	80	82	14	15	
6 (MS)	50	50	1	1	
7 (SCI)	75	75	9	9	

The **aim** of this study is to **evaluate the effects of robot-assisted locomotor training** on **muscular recruitment** in patients with gait disorders.

Patients enrollment:

• 7 subjects (5 M, 2 F, mean age 53.7±14.7, range 23-67)

• 3 SCI patients

- 4 Multiple Sclerosis (MS) patients
- 5 control subjects (4 M, 1 F, mean age 35.8 ± 17.6, range 18-57)

EMG recording

- rectus femoris (RF) and biceps femoris (BF) of both legs
- two treadmill speeds (v₁ = 1.0

km/h, v₂ = **2.0 km/h**)

• two robot-interaction modalities (passive and active)

EMG Data Analysis

- Rectification
- Signal processing
- Signal filtering
- Signal normalizationIntegration

S. Mazzoleni, E. Battini, T. Tombini, G. Stampacchia. "Effects of robot-assisted locomotor training in patients with gait disorders following neurological injury: an integrated EMG and kinematic approach", in Proc. 14th IEEE/RAS-EMBS International Conference on Rehabilitation Robotics, August 11-14, 2015, Singapore, pp. 775-779

Robot-assisted treadmill gait rehabilitation for SCI patients: Surface EMG measurements and analysis

Stefano Mazzoleni

Battini

DGO active, v₁

DGO active, v₂

blue, patients pre-treatment; red, patients post-treatment; green: healthy subjects

	,	/1	۷	2
	Stance	Swing	Stance	Swing
RF	55.55	58,49	71.51	114.41
BF	25.39	41.12	13.63	16.43

S. Mazzoleni, E. Battini, T. Tombini, G. Stampacchia. "Effects of robot-assisted locomotor training in patients with gait disorders following neurological injury: an integrated EMG and kinematic approach", in Proc. 14th IEEE/RAS-EMBS International Conference on Rehabilitation Robotics, August 11-14, 2015, Singapore, pp. 775-779

Robot-assisted overground gait rehabilitation for SCI patients: subjective experience

anter Calendar

Stefano Mazzoleni Elena Battini

Aim

• to investigate the **acceptability of oveground robot-assisted walking** and its effects on pain and spasticity

Methods

- **21 Spinal Cord Injury** (SCI) patients (17 men, 4 women; mean age: 48.10±1.23)
- **Single session** using powered robotic exoskeleton (Ekso GT, Ekso Bionics, USA)

Assessment measures

- Pain and muscle spasticity assessed using Numerical Rating Scale (**NRS-pain** and **NRS-spasticity**). Muscle spasticity was also evaluated using Modified Ashworth Scale (**MAS**) and Penn Spasm Frequency Scale (**PSFS**)
- Positive and negative sensations were investigated using an apposite questionnaire
- PSFS, NRS-pain and NRS-spasticity scores were analysed using repeated measures ANOVA

Robot-assisted overground gait rehabilitation for SCI patients: subjective experience

Stefano Mazzoleni

Elena Battini

G. Stampacchia, A. Rustici, S. Bigazzi, A. Gerini, T. Tombini and <u>S. Mazzoleni</u>. Walking with a powered robotic exoskeleton: subjective experience, spasticity and pain in spinal cord injured persons. NeuroRehabilitation 39 (2016), 277-3283

Robot-assisted gait rehabilitation for SCI patients: driven gait orhosis vs overground powered exoskeleton

Hypothesis:

Is there any difference in terms of **MET and VO₂ consumption** between driven gait orthosis and overground exoskeleton training?

Methods:

- * 8 SCI subjects, mean age: 45.38 ± 15.26 , mean time from pathology onset: 60.88 \pm 103.41 months;
- Patients underwent a robot-assisted gait exercise using two different robotic systems: an overground robotic exoskeleton (Ekso GT, Ekso Bionics, USA) (modality 1) and a driven gait orthosis (Lokomat, Hocoma, Switzerland) (modality 2).
- Measurements were recorded during a single rehabilitation session
- A questionnaire (6 items, score ranging from 0 to 10) aims to investigate the subjective perception during the two robot-assisted gait exercises

Stefano Mazzoleni Elena Battini

modality 1

modality 2

ID	Gender	Age	Cause of lesion	Level of lesion	ASIA
1	M	25	T	11	A.
z	F	26	NT	12	C
З	M	42	T	11	В
4	м	44	Т	1.3	A
5	M	48	T.	D11	C
6	F	56	NT	C4	С
7	M	56	NT	D6	D
8	· F	64	NT	1.2	A

S. Mazzoleni, E. Battini, M.Dini, S. Corbianco, A. Gerini, G. Stampacchia. "Physical and cognitive effort during robotic exoskeleton assisted walking on treadmill and overground in SCI persons", 17th National Congress of Italian Society of Movement Analysis in Clinical setting, 5-8 Ottobre 2016, Milano, Italy.

Robot-assisted gait rehabilitation for SCI patients: driven gait orhosis vs overground powered exoskeleton

modality 1

modality 2

S. Mazzoleni, E. Battini, M.Dini, S. Corbianco, A. Gerini, G. Stampacchia. "Physical and cognitive effort during robotic exoskeleton assisted walking on treadmill and overground in SCI persons", 17th National Congress of Italian Society of Movement Analysis in Clinical setting, 5-8 Ottobre 2016, Milano, Italy.

Stefano

Mazzoleni

Elena

Battini

Outline of the presentation

- BioRobotics and Bionics convergence
- Rehabilitation and Assistive Robotics
 - Upper limb robot-assisted therapy
 - Gait robot-assisted therapy
 - Precision orthopaedic surgery Precision orthopaedic rehab
 - RISE robotic wheelchair
- Sports biomechanics
- Lessons, new scenarios and challenges

From surgical intervention to rehabilitation

Outline of the presentation

- BioRobotics and Bionics convergence
- Rehabilitation and Assistive Robotics
 - Upper limb robot-assisted therapy
 - Gait robot-assisted therapy
 - Precision orthopaedic surgery Precision orthopaedic rehab
 - RISE robotic wheelchair
- Sports biomechanics
- Lessons, new scenarios and challenges

B

Stefano Mazzoleni Elena Battini

Innovative features:

- improved frontal access
- automatic verticalisation
- gluteal-perineal mechanical design for easy toilet access
- mobility (upright and sitting posture)

Clinical validation (end: July 2019) at CRM INAIL Volterra (n=10 persons affected by low-thoracic Spinal Cord Injury) Patent: "Dispositivo robotico per la verticalizzazione e la mobilità di persone con gravi disabilità" (priority n. 102016000050120)

Robotic system for verticalisation and mobility of

severely impaired persons (2013-2019)

Robotic wheelchair RISE

Mechanical design

T stand-up = 30

Actuator A (1350 N)

System for feet adjustable

Actuator B

(2450 N)

3 interfacce regolabili:

- Thigh interface
- Frontal interface
- Tibial support

Innovative powered wheelchair: Robotic Innovation for Standing and Enabling

Anthropometric use	r characteristics	
ht. min-max. (kg)	52-110	
ht. min-max. (cm)	160-200	
Device dim	ensions	
stal lenght (cm)	101	
otal width (cm)	70	
otal depth (cm)	56	
Technical spe	cifications	
mum speed (km/h)	5	
rning radius (°)	360	
iperature <u>exercise</u> ain-max) ([°] C)	-20 - 40	
Drivinig wheel	2x, d = 320 mm	
ward eastor wheel	2x , d = 100 mm	
side castor wheel	2x, d = 120 mm	
Electric s	ystem	
ters motors (W)	4x 55.20	
le base <u>motors</u> (W)	2x 350	

2x 12 V, 40 Ah, LiFePO4

Outline of the presentation

- BioRobotics and Bionics convergence
- Rehabilitation and Assistive Robotics
 - Upper limb robot-assisted therapy
 - Gait robot-assisted therapy
 - Precision orthopaedic surgery Precision orthopaedic rehab
 - RISE robotic wheelchair
- Sports biomechanics
- Lessons, new scenarios and challenges

Sports bioengineering and performance biomechanics

Di Paco et al Multidisciplinary Respiratory Medicine 2014, 9:20 http://www.mmiournal.com/content/9/1/20

ORIGINAL RESEARCH ARTICLE

Ventilatory response to exercise of elite soccer players

Adriano Di Paco¹²⁴, Giossé A Catapano³, Guido Vagheggini¹², Stefano Mazzoleni²⁴, Matteo Levi Micheli⁵ and Nicolino Ambrosino¹²

- N=90 professional soccer players from Italian Major League (serie A)
- Procedures:
- Lung functions test
- Electrocardiography
- **Exercise test**
- Gas measurement

Time (s)

Stefano Mazzoleni

Ricardo Kakà at AC Milan 2003-2009 - Courtesy of AC Milan

A		
 Groups based on role: Forwards (E) 	BMI [Kg/m ²]	23
Central midfielders	Height [cm]	18
(CM)	Weight [Kg]	79
Central defenders	Age [years]	25

- (CD)
- Wide players (WP)

	and the second s			
	All	Hi-M n = 45	Lo-M n = 45	P
BMI [Kg/m ²]	23.8 ± 1.2	23.6 ± 1.4	24.0 ± 0.9	0.1326
Height [cm]	181.8 ± 5.2	184.0 ± 4.9	182.6±5.2	0.059
Weight [Kg]	79.4 ± 5.5	80.0 ± 5.6	78.8 ± 5.3	0.3221
Age [years]	25.9 ± 4.0	25.2 ± 3.5	26.6 ± 4.4	0.0969
MVV [L/m]	201.1 ± 21.7	206.6 ± 20.4	195.6 ± 21.6	0.0155
FEV ₁ [L]	5.0 ± 0.5	5.2 ± 0.5	4.9 ± 0.5	0.0152

Ventilatory response to excercise of elite soccer players

Aim: to evaluate the role of ventilatory parameters in maximal exercise performance in elite soccer players

- Methods
- N=90 professional soccer players from Italian Major League (serie A)
- 4 groups based on role:
 - forwards (F)
 - central midfielders (CM)
 - central defenders (CD)
 - wide players (WP)
- Period: September-December 2009-2012

Procedures:

- Lung functions test
- Electrocardiography
- Exercise test
- Gas measurement

Ricardo Kakà at AC Milan 2003-2009 -Courtesy of AC Milan

- Lung functions test: performed by means of pneumotachograph (V-Max Encore, Yorba Linda, CA, USA)
- •Maximal Voluntary Ventilation (**MVV**) was estimated by multiplying Forced Expiratory Volume at first second (**FEV**₁) value by **40**
- **Electrocardiography (EKG):** performed by means of a 10-electrocardiograph (Cardiosoft, GE medical systems, Fairfield, CT, USA)
 - Resting and exercise EKG assessed un upright position
 - Six precordial leads on the cardiac screening
- $MEV = v_l + \left(\frac{n}{6_0}\right)$
- Four peripheral leads on the posterior wall of the chest
- Incremental symptom-limited exercise test: performed on a treadmill (Runrace 900, Technogym, Gambettola, Italy) under EKG and pulse oximetry monitoring. Continuous "ramp" protocol at constant grade (1%), starting from 8 km/h, increasing speed by 1km/h every 60 seconds

Test stop: subject's exhaustion.Exercise tolerance was evaluated as the Maximal Exercise Velocity (MEV)

	All	Hi-M n = 45	Lo-M n = 45	p	The output of th	HI-VE n = 45	Lo-VE n = 45	p		Results				
MEV [km/h]	18,5 ± 1.1	19.4±0.6	17.6±0.7	0.0000	MEV (km/h) VF	18.9 ± 0.9	187±12 1371+148	0.0000	MEV media	an =	VE _{peak} m	edian =	VE	_{beak} =41.76+(21.88*VO _{2pe}
VEpeak[L/min]	151.7 ± 19.4	156.2 ± 19.8	147.1 ± 17.9	0.0249	(Va'Va)peak	0.09 ± 0.03	0.18±0,03	0.0741	18.65 km/	h	153.06 L	/min	_{ak})	r=0.619; p<0.001
(Vd/Vs)peak	0.10 ± 0.03	0.09 ± 0.04	0.11 ± 0.03	0.0548	RR _{peeb} (breaths/min)	538±51	52.7 ± 4.6	0.2617		All	Hi-M n = 45	Lo-M n = 45	р	
RR _{peak} [breaths/min]	53.3 ± 4.9	54.5±5.1	52.6 ± 4.6	0.0773	Vt _{panit} [Umin]	1058+89	252±034	0.0000	BMI [Kg/m ²]	23.8 ± 1.2	23.6 ± 1.4	24.0 ± 0.9	0.1326	222 T
Vtpeak[L/min]	2.87 ± 0.45	2.92 ± 0.42	2.84 ± 0.45	0.3848	VO _{tprot} /HR _{prot} /mL/min/bb)	383 ±40	254 ± 18	0.0004	Height [cm]	181.8 ± 5.2	184.0 ± 4.9	182.6 ± 5.2	0.059	\$ m
HR _{ceak} [b/min]	186.0±9.5	1862±96	185.7±9.4	0.7911	VO _{3peak} (mL/min/Kg)	05.7 ± 4.4	60#±53	0.0000	Weight [Kg]	79.4 ± 5.5	80.0 ± 5.6	78.8 ± 5.3	0.3221	11 10
VO _{2peak} [mL/min/Kg]	63.3±5.3	633±53	63.2 ± 5.4	0.9359	BRR(L)	345±180	40.3 ± 20.8	0.0006	Age [years]	25.9 ± 4.0	25.2 ± 3.5	26.6 ± 4.4	0.0969	1 141 5 120
BRR(L)	41.9±20.8	42.B ± 20.1	41.0 ± 21.4	0.6726	RR _{put} [VCO ₂ /VO ₂]	1.08 ± 0.17	1.10.±0.10	0.4576	MVV [L/m]	201.1 ± 21.7	206.6 ± 20.4	195.6 ± 21.6	0.0155	102
BRR%	79.0±9.3	79.1 ± 9.5	78.8±9.1	0.8750	MVV[L/min] FEV;[L]	2080±180 52±04	194.2 ± 22.9 4.8 ± 0.6	0.0020	FEV ₁ [L]	5.0 ± 0.5	5.2 ± 0.5	4.9 ± 0.5	0.0152	00 + - + + + + = + = = = = = = = = = = = =

Di Paco, et al. Ventilatory response to excercise of elite soccer players. Multidiscip Respir Med. 2014; 9(1): 20. Published online 2014

Ankle injuries prevention in in parachutists (Brigata Paracadusti "Folgore")

Ground Force Reaction during a

V	1 ^m Peak	6.45
$v_0 = 4.2 / m/s$	Time to 2nd Peak	0.053
	2nd Peak	9.34
	Time to 1st Peak	0.031
V	1 st Peak	11.31
$v_0 = 5.18 \text{ m/s}$	Time to 2nd Peak	0.048
	2nd Peak	14.07

PLF tests were conducted **indoor**. The experimental setup involved collection of ground reaction forces, lower extremity kinematics data using a **force platform system**.

Foot and Ankle Anatomy

It is made up of:

- 28 bones (26 for the foot and 2 for the leg (Fibula and Tibia))
- 33 ligaments
- 12 muscles

and 4 joints:

- Subtalar (Talocalcaneal)
- Tibiotalar (Talocrural, ankle mortise)
- Tibiofibular (Inferior)
- Tranverse-Tarsal (Talocalcaneonavicular)

Brockett et al., ScienceDirect 2016

Biomechanics of the foot

Figure 5 Diagram illustrating typical adquict from galt analysis of the walking trials, at representing ankie complex station in sagittal, frontal and tensorese planes given gant to right, respectively; b) sagittat plane ankie moments and c) sagittat plane ankie power. The shaded area on all graphs represents ±1 standard deviation. Figure adquired from Visual 30 (C-Motion, Rockville, Maryland).

Fig. 3. Electropropriate activity incrimitized to each subject's mean EMGI for site muscles during welking. Plots show mean EMGI (solid line) and one standard deviation (dotted lines) for samples of varying size. Activity of mediat and lateral gastrocorers muscles is very similar and is contributed for discussion in taxit. (Happinde with permission.¹¹)

Sequence of pressure plots over the entire stance phase of walking

Brockett et al., ScienceDirect 2016

Equipment

4 IMU sensors

RL

RF

LL

FF = forefoot MF = midfoot RF = rearfoot

F-Scan*

In-Shoe Analysis System

1 insole with FSR sensors

3 videocameras

H1 = 0,51 m H2 = 0,71 m H3 = 1,04 m

lp = landing point

F = Frontal view L = Lateral view P = Posterior view

Jump dynamics analysis

Angular speed (Dps = $^{\circ}$ /s) XYZ – H3

Range of motion– H3

LEFT KNEE - H3

Range of motion– H3

LEFT ANKLE - H3

RIGHT ANKLE - H3

Landing Performance Index(LPI):

LPIm

Subject #5(20 years – 84 kg – 173 cm) correct jump– H3

Subject # 1 (26 years – 100 kg – 176 cm), 1) Flat landing– H2

Subject # 4 (20 years- 72 kg - 175 cm), 2) Squat landing- H3

Subject # 7 (19 years – 75 kg – 173 cm), 3) Forward step landing – H1

EREDORT

REARFOOT

MIDEUCO

NUME FOOT PRESSURE DISTRIBUTION

[MPa ix100]

Subject # 9 (24 years – 74 kg – 175 cm), 4) Push upward landing – H3

Sports bioengineering and performance biomechanics

Salvatore Cimmino, 54 yrs Ponza-Ventotene 27 miles - 17 hrs swimming Start: 11:00 pm Sept 18 2018, arrival: 3:00 pm Sept 19 2018

Ongoing research projects and collaborations

(2018-2020) VERSUS - Virtual-Reality Enhanced Rehabilitation for Sustainable and Usable Services, funded by Regione Toscana, within the framework POR-FESR 2014-2020, Bando n.2: progetti strategici di ricerca e sviluppo delle MPMI (budget: 211.229,00 €) - Ranked 1st among 220+ research proposals in MEDTECH domain

(2018-2020) ARCONTE - Piattaforma multidisciplinare web-based integrata per la gestione delle procedure perioperatorie e delle pratiche medico chirurgiche, funded by Regione Toscana, within the framework POR-FESR 2014-2020, Bando n.2: progetti strategici di ricerca e sviluppo delle MPMI (budget: 200.000,00 €)

(2018-2020) **ARONA - Navigazione Chirurgica Assistita da Robotica Avanzata**, coordinator: MASMEC SpA (Modugno, Bari, Italy), funded by Italian Ministry of Education, University and Research (MIUR) wirthin the framework of National Research Program (PNR) 2015 – 2020 (budget: 350.000,00 €), Partners: Università Campus Biomedico, Istituto Tumori Bari, ASL Toscana Nord-Ovest, The BioRobotics Institute

(2017-2019) **ROBOVIR - Sviluppo e validazione di una piattaforma robotica per la riabilitazione motoria e il coordinamento visuomotorio degli arti superiori con scenari di realtà virtuale relativi ad attività di vita quotidiana, funded by INAIL (Italian Workers Compensation Authority) (budget: 226.000,00 €)**, PI: Stefano Mazzoleni, Partners: Istituto Superiore Sanità, Politecnico di Bari, ASL Toscana Nord-Ovest

(2014-2018) **RF-2011-02346770 Clinical and healthcare strategies for improving quality of life in persons affected by spinal cord injuries: Tuscany regional network and use of innovative technological devices**, funded by Italian Ministry of Health (budget 108.176,32 €), PI: Dr. Giulia Stampacchia (Pisa University Hospital), Partners: Spinal Cord Injury Unit, Firenze University Hospital, The BioRobotics Institute

ROBOVIR - Sviluppo e validazione di una piattaforma robotica per la riabilitazione motoria e il coordinamento visuomotorio degli arti superiori con scenari di realtà virtuale relativi ad attività di vita quotidiana

insole

7 dof robotic

arm

ROBOVIR Work reintegration End: Shoulder Start: **Duration: 30 months** diseases 29/06/2017 29/12/2019 **Coordinator: RV** scenarios The BioRobotics Institute, Scuola Superiore ant'Anna Sant'Anna Partner: Istituto Superiore di Sanità Poltiecnico di Bari Azienda USL Toscana Nord Ovest The project is **funded** by **INAIL**: Budget TOT di Partenariato: 384.000,00€ Sensorized

Patient

 Contributo concesso al partenariato: 226.000,00€ **ROBOVIR** - Sviluppo e validazione di una piattaforma robotica per la riabilitazione motoria e il coordinamento visuomotorio degli arti superiori con scenari di realtà virtuale relativi ad attività di vita quotidiana

Methods

The robotic platform consists of:

- end-effector characterized by 7 DoFs
- different sensors to analyse:
 - upper limb biomechanics
 - visuomotor coordination
 - role of tactile sensory

Robot Panda (Franka Emika)

interfaces	 Ethernet (TCP/IP) for internet and/or shop-floor connection power connector IEC 60320- C14 (V-Look) Arm connector
controller size (19")	355 x 483 x 89 mm (D x W x H)
supply voltage	100 VAC - 240 VAC
mains frequency	47-63 Hz
power consumption	 max. 600 W average ~ 300 W
active power factor correction (PFC)	yas
weight	- 7 kg
protection rating	IP20
ambient temperature	 +15°C to 25°C (typical) +5°C to + 45°C (extended)³
air humidity	20% to 80% non-condensing

Versatile & programming control

29(11)					
degrees of freedom	7 DOF				
payload	3 kg				
sensitivity	torque sensors in all 7 axes				
maximum reach	855 mm A1: -166/166, A2: -101/101, A3: -186/166, A4: -176/-4, A5: -166/166, A6: -1/215, A7: -166/166				
joint position limits [°]					
joint velocity limits [°/s]	A1: 150, A2: 150, A3: 150, A4: 150, A5: 180, A6: 180, A7: 180				
Cartesian velocity limits	Up to 2 m/s end effector speed				
repeatability	+/- 0.1 mm (ISO 9283)				
interfaces	Ethernet (TCP/IP) for visual intuitive programming with Desk input for external enabling device input for external activation device or a safeguard Control connector Hand connector				
interaction	enabling and guiding button, selection of guiding mode, Pilot user interface				
mounting flange	DIN ISO 9409-1-A50				
installation position	upright				
weight	~ 18 kg				
protection rating	IP30				
ambient temperature	 +15°C to 25°C (typical) +5°C to + 45°C (extended)³ 				
air humidity	20% to 80% non-condensing				

 virtual reality (VR) rehabilitation scenarios including ADLs adaptive control system

The robotic platform will be integrated with:

ROBOVIR - Sviluppo e validazione di una piattaforma robotica per la riabilitazione motoria e il coordinamento visuomotorio degli arti superiori con scenari di realtà virtuale relativi ad attività di vita quotidiana

Technical validation in progress

VERSUS - Virtual-Reality Enhanced Rehabilitation for Sustainable and Usable Services

Start: End: 02/10/2017 14/09/2019 Duration: 23 months **Coordinator:** SIGNO MOTUS S.r.l. Partner: VRMEDIA S.r.l. MOV'IT S.r.l. HORENTEK S.r.l. DIELECTRIK S.r.l. The BioRobotics Institute, Scuola Superiore Sant'Anna - -> BTR **CPA WEB SOLUTIONS** The project is **funded** by **Regione** Toscana: At hospital Budget TOT di Partenariato: rehabilitati 1.786.282,00€ on: chronic phase Contributo concesso al partenariato: 893.141,00€

At hospital rehabilitation: subacute phase

Outline of the presentation

- BioRobotics and Bionics convergence
- Rehabilitation and Assistive Robotics
 - Upper limb robot-assisted therapy
 - Gait robot-assisted therapy
 - Precision orthopaedic surgery Precision orthopaedic rehab
 - RISE robotic wheelchair
- Sports biomechanics
- Lessons, new scenarios and challenges

Source: https://www.pwc.com/gx/en/industries/healthcare/publications/ai-robotics-new-health/transforming-healthcare.html

Robotics and Bionics for improving quality of life of persons with disabilities

292/

Ethical issues and challenges

- A **new alliance** among researchers, stakeholders and institutions is needed to **govern** social, economic, cultural and anthropological changes associated to scientific and technological innovations in the field of biomedical applications (including micro- and nanosystems):
 - Personalised medicine
 - Regenerative medicine
 - Biomaterials
 - Nanomedicine
 - Gene editing
- Relevant ethical issues in biomedical technology:
 - Protecting human subjects in clinical trials
 - Affordability
 - Privacy and protection of personal data
 - Stem cells research
 - Bioterrorism

Open issues

- Personalised rehabilitation (duration, intensity, patient-robot interaction) and assistance
- Precision rehabilitation (kinematic/biomechanical metrics)
- Integration among different technologies (robotics, tDCS, FES,...)
- Continuity of care (from hospitalisation to home-based programmes) and patient empowerment
- Combined design approach (clinical and engineering): motions and emotions
- Need of patients stratification (severity, lesion site and volume, gender, age,...)
- Education in PM&R (Master programmes, PhD programmes, specialisation schools, master, professional education courses,...)
- Privacy and protection of personal data (data transmission)

Some conclusions...

- Technologies for rehabilitation, assistance and sports biomechanics (robots, wearable sensors): movement quantitative and qualitative assessment (kinematics, EMG, forces/pressures – upper limb/gait/posture)
- Wearable sensors as safe, valid and reliable tool for non invasive functional assessment of movements and activities of daily living
- Implementation of viable healthcare services/solutions (organisational, economic, clinical)
- Integrated technologies for e-health services: to cure by increasing appropriateness and patients safety, but even accessibility, equity and diagnosis/cure procedures speed

Bioengineering Rehabilitation Laboratory The BioRobotics Institute, Scuola Superiore Sant'Anna

Stefano Mazzoleni, PhD, Assistant Professor

Vi Do Tran, PhD in Biorobotics

Elena Battini, Research Assistant

Thanks for your attention!

V.le R. Piaggio, 34 – 56025 Pontedera - Italy stefano.mazzoleni@santannapisa.it Tel. + 39 050 883132 - Fax + 39 050 883101