

Counteracting balance loss by using wearable robotics

Speaker: Vito Monaco vito.monaco@santannapisa.it

Bari, 20 May 2019 Thanks to Prof. V. Bevilacqua for the invitation

Outline of the presentation

• Fall risk: what are we talking about?

- State of art
 - Assessing the fall risk
 - Detecting falls/lack or balance
 - Counteracting falls/lack of balance
- Wearable robot: the dream
- Our toolbox
 - SENLY
 - Active Pelvis Orthosis
- A possible strategy
 - Detection Algorithm
 - Assistive strategy
- Ongoing activities
 - Different perturbations
 - Other approaches for the detection
 - Robotic prosthesis
- Conclusions

Who falls	Risk factor	Range			
	Age	+ 65 Fall risk			30%
		+ 80	(1 fall per year)		50%
	Gender	Μ	Injury rate		F > M
Where/How		F			
villereynow	Medical Conditions	 Diabetes Parkinson's disease Depression Incontinence Alzheimer disease 			
Consequences	Physical Conditions	 Muscle weakness Impaired balance Gait deficits Visual deficits 		 Limited mobility Cognitive impairment Impaired ADL Postural Hypothensi 	nts on
How much	Behavioral factors	 Sedentary lifestyle Medication intake Alcohol misuse Inappropriate shoes 	5		

A global report on falls prevention - WHO

A global report on falls prevention - WHO

Video capture of the circumstances of falls in elderly people residing in long-term care: an observational study

How much

Who falls

Where/How

Robinovitch et al., Lancet 2013

Who falls

Video capture of the circumstances of falls in elderly people residing in long-term care: an observational study

Estimated proportion of participants falling at least once, and average number of falls per participant, attributable to various causes of falling

		Frequenc	y*	Participants due to this ca	falling wse [†]	Number of fall per participan	s t [†]
Where/How		Number	Percentage of falls captured	Estimated proportion, % (SE)	95% CI	Estimated count, n (SE)	95% CI
	Incorrect transfer or shift of bodyweight	93	41%	51.2% (4.5)	42.5-59.8	0.72 (0.078)	0.59–0.90
	Trip or stumble	48	21%	26.0% (3.9)	19.1-34.3	0.35 (0.054)	0.26-0.47
	Hit or bump	25	11%	17.3% (3.4)	11.7-25.0	0.19 (0.040)	0.13-0.28
	Loss of support with external object	25	11%	18.9% (3.5)	13.0-26.7	0.20 (0.041)	0.13-0.30
Consequences	Collapse or loss of consciousness	24	11%	16.5% (3.3)	11.0-24.1	0.17 (0.039)	0.11-0.27
	Slip	6	3%	4.7% (1.9)	2.1-10.2	0.047 (0.020)	0.021-0.11
	Could not tell	6	3%				

In descending order of frequency.

Of 227 total falls captured.

How much

⁷Of 215 falls analysed, after exclusion of cases for which the faller could not be identified (six), and cases for which the team could not identify the cause of the fall (six).

Robinovitch et al., Lancet 2013

How much

A global report on falls prevention - WHO

Global Both sexes, All ages, 2017, DALYs i Annual % change IHD Lung C LRI Who falls Stroke Back Pain Neonatal 1990 T to 2017 T DALYs/100.000 Breast C Other MN Neck Pain -2% TB sophag C Cervix C Where/How ancreas (Diarrhea -19/ HTN HD CMP RHD A Fib ip Oral Depression Oth COPD Asthma Cirrhosis Hearing PEM 094 Vit A HIV Hep Anxiety Blindness Alzheimer's Headaches Consequences ASD 1% Road Inj Hemog alls Congenital Drugs 204 CKD Diabetes Mech ⊏ Endocrine Self Harm Urinary Violence F Body Oral Psoriasis

Global Burden of Disease

How much

DALYs ~ the number of years lost due to the ill-health, disability, or early death

https://vizhub.healthdata.org/qbd-compare/

Who falls
 Fall-related injuries are among the most expensive health conditions
 In 2000, \$179 <u>million</u> were spent on fatal falls and \$19 <u>billion</u> were spent on injuries from non-fatal falls in US

Stevens et al., Inj. Prev. 2006

- Modena University Hospital 2012
 - 220/240 hip fracture per year
 - € 10.000 per fracture
 - € 2.2-2.4 million per year
- Italy: € 1 billion per year due to falls
- Europe: € 800 billion per year due to falls

How much

Consequences

Dr. La Porta, SIAMOC 2018

Outline of the presentation

- Fall risk: what are we talking about?
- State of art
 - Assessing the fall risk
 - Detecting falls/lack or balance
 - Counteracting falls/lack of balance
- Wearable robot: the dream
- Our toolbox
 - SENLY
 - Active Pelvis Orthosis
- A possible strategy
 - Detection Algorithm
 - Assistive strategy
- Ongoing activities
 - Different perturbations
 - Other approaches for the detection
 - Robotic prosthesis
- Conclusions

Assessing the fall risk

Fall risk assessment is a process in which the probability of a future fall is estimated, usually within a timeframe of 6–12 months.

Danielsen et al., J Biom. Inf. 2016

Detecting falls

Personal Emergency Report System (PERS 2.0)

• How it works

- Devices able to detect a fall <u>after it occurs</u> in order to overcome long-lie conditions;
- Based on smart environments, video-cameras, acoustic or inertial sensors, and mobile phone technology.

• Limits

- Able to detect a fall only after the subject hits the ground
- Some of them only work in structured environments
- Commercially available

Wearable sensors

Detecting falls

Detecting falls: do current algorithms work in the real world?

- Sensitivity measures the proportion of actual positives which are correctly identified
- Specificity measures the proportion of negatives which are correctly identified

Bagalà et al., PLOSOne 2012

Detecting falls

	Pros	Cons	
<section-header></section-header>	 Many sensors Mitigate fall consequences ("long lie") Autonomous 	 Structured Environments Invasive Act after falling 	
Wearable Sensors	 Unstructured Environments Embedded in personal devices 	 Not reliable set-up Non Autonomous 	

Pre-impact fall detection

Lack of balance ≠ fall

- <u>Falling</u>: lying on the ground after hitting it
- <u>Lack of balance</u>: maybe, you can still recovery the balance... maybe not

- Pros
 - to timely ask for assistance
 - to timely activate fall protection systems
- Weaknesses
 - data collected in structured environments
 - protection system: any suggestion?

Hu and Qu, BioMed Eng Online 2016

Pre-impact fall detection

Experimental sessions

- Pros
 - to timely ask for assistance
 - to timely activate fall protection systems

Weaknesses

- data collected in structured environments
- protection system: any suggestion?

Pre-impact fall detection

Protection systems

INFLATION TIME OF THE AIRBAG WHILE MIMICKING A FALL USING THE PROPOSED ALGORITHM					
Subjects	Inflation time	Fall time			
1	0.100	0.207			
2	0.140	0.387			
3	0.133	0.223			
4	0.121	0.177			
Ave	0.121	0.249			
SE	0.019	0.094			

TABLE II

Start to fall

Inflate airbag

Completely inflate

Fall

• Pros

- to timely ask for assistance
- to timely activate fall protection systems

Weaknesses

- data collected in structured environments
- protection system: any suggestion?

Outline of the presentation

- Fall risk: what are we talking about?
- State of art
 - Assessing the fall risk
 - Detecting falls/lack or balance
 - Counteracting falls/lack of balance

• Wearable robot: the dream

- Our toolbox
 - SENLY
 - Active Pelvis Orthosis
- A possible strategy
 - Detection Algorithm
 - Assistive strategy
- Ongoing activities
 - Different perturbations
 - Other approaches for the detection
 - Robotic prosthesis
- Conclusions

Wearable robots: the dream

"Perhaps in the latter half of this century, exoskeletons and orthoses will be as pervasive in society as wheeled vehicles are today."

Why robots against falls?

Wearable robots are:

- equipped with <u>sensors</u> to monitor subjects' dynamical conditions
- equipped with <u>actuators</u> to modify user's dynamical balance
- controllable/programmable
- multiple purposes platforms
- active before falling
 - not hitting the ground
 - not stigmatizing the balance loss

Wearable robots: the dream

HAL5 [Cyberdyne]

Hyundai Exoskeleton [Hyundai Motor]

Rewalk [Argo]

Body weight support [Honda]

HAL Lumbar for labor support [Cyberdyne]

HAL Lumbar for care support [Cyberdyne]

Wearable robots

What they do

Full body exoskeletons not currently used in daily-life scenarios except for

strongly motivated persons affected by severe diseases

(e.g., young patients affected by spinal cord injury resulting after a traumatic accident)

Pelvis exoskeletons

Can these be used to counteract the lack of balance?

Outline of the presentation

- Fall risk: what are we talking about?
- State of art
 - Assessing the fall risk
 - Detecting falls/lack or balance
 - Counteracting falls/lack of balance
- Wearable robot: the dream
- Our toolbox
 - SENLY

Active Pelvis Orthosis

- A possible strategy
 - Detection Algorithm
 - Assistive strategy
- Ongoing activities
 - Different perturbations
 - Other approaches for the detection
 - Robotic prosthesis
- Conclusions

Our experimental setup: SENLY

The European Robotics Research Infrastucture Network

Transnational access – **free of charge** – to research infrastructures

Main features:

- size 2.5m x 2.5m
- double split treadmill
- AP belt movement
 - max speed 1.8 m/s
 - max acc 8 m/s²
- ML belt movement
 - max disp 0.3 m
 - max speed 1.25 m
 - max acc 2.4 m/s²
- Sensorized platform

Bassi Luciani et al., JNER 2012

Modulating the intensity of the perturbation

Onset: HS of the limb being perturbed

Onset: TO of the contralateral limb

TO

HS

Bassi Luciani et al., JNER 2012

Active Pelvis Orthosis (APO)

Active and Passive degrees of freedom					
Active flexion/extension RoM	Extension: -30 deg	Flexion: 110 deg			
Passive abduction/adduction RoM	Adduction: -15 deg	Abduction: 45 deg			
	SEA Characteristics				
Motors	100 W BL DC	Maxon Motor			
Reduction Stage	100:1 Harr	monic Drive			
Spring Stiffness	100 N	lm/rad			
	SEA Performance				
Max torque	Continuous: 20 Nm	Peak: 35 Nm			
Joint output mechanical impedance	< 1 Nm/rad @ 1 Hz				
Closed-loop torque-control bandwidth	15 Hz				
Control Architecture Characteristics					
Low-level controller sampling rate 1 kHz					
High-level controller sampling rate	1	1 kHz			
Others					
Weight	4.2 kg				
Safety limits	Active DoF out of RoM Joint speed > 400 c				
Power Supply	48 V				

Giovacchini et al., Rob and Aut Sys 2015

Active Pelvis Orthosis (APO)

Giovacchini et al., Rob and Aut Sys 2015

Active Pelvis Orthosis (APO)

α -prototype

 β -prototype

γ-prototype

IUVO

www.iuvo.company

Outline of the presentation

- Fall risk: what are we talking about?
- State of art
 - Assessing the fall risk
 - Detecting falls/lack or balance
 - Counteracting falls/lack of balance
- Wearable robot: the dream
- Our toolbox
 - SENLY
 - Active Pelvis Orthosis
- A possible strategy
 - Detection Algorithm
 - Assistive strategy
- Ongoing activities
 - Different perturbations
 - Other approaches for the detection
 - Robotic prosthesis
- Conclusions

Overview of the proposed strategy

Monaco et al., Sci Rep 2017

Overview of the proposed strategy

Main issues:

1. Detecting the lack of balance

- How to do
- Is it feasible?
- Is it "on time"?
- 2. Counteracting the lack of balance
 - How to do
 - Is it effective?
- 3. Any other approach?

Human walking can be considered a quasi automatic and periodic motor task whose features can be described by suitable attractors and/or limit cycles reflecting strong intra-limb and inter-limbs coordination

When the dynamics of the locomotion is altered by a sudden and unexpected perturbation, intra- and inter-limbs coordination is modified and their rhythmic features are lost

Legend

- Perturbation triggering
- Perturbation detection
- ... Estimated trajectory
- Real trajectory

Difference

Tropea et al., Ann Biom Eng 2014

0

0

10

20

30

40

Steps in a Row

50

just 0.6% of all bouts

60

70

Tropea et al., Ann Biom Eng 2014 Orenduff et al., JRRD 2008

Tuning parameters:

- k_A and k_P , amplitude and phase gains
- w, bin length
- ko, threshold
- r, # warning

Optimal tuning:

- min detection time
- min false alarms
- short transitory (4/5 strides)

perturbed hip w = 100 r = 4 k=3

Results

Best adaptive oscillator performances

Hip joint angular excursion				
Protocol	Accuracy [%]	Value [ms]	Strides	
HS	91.7	289 ± 81	5	
то	88.2	166 ± 12	5	

WLK Speed = 1.1 m/s MDT = 291 ms

WLK Speed = 0.64 m/s MDT = 403 ms

Overview of the proposed strategy

Main issues:

- 1. Detecting the lack of balance
 - How to do
 - Is it feasible?

- Is it "on time"?
- 2. Counteracting the lack of balance
 - How to do
 - Is it effective?
- 3. Any other approach?

Role of stability and limb support in recovery against a fall following a novel slip induced in different daily activities

Feng Yang, Tanvi Bhatt, Yi-Chung Pai*

After about 300-400 ms, the lack of balance not longer recoverable and turns to fall

Q. Are we on time?

A. Yes, just in time (fortunately)

Overview of the proposed strategy

Main issues:

- 1. Detecting the lack of balance
 - How to do
 - Is it feasible?
 - Is it "on time"?
- 2. Counteracting the lack of balance
 - How to do
 - Is it effective?
- 3. Any other approach?

Counteracting the lack of balance

- 1. The forward foot starts
 - slipping

(B)

- 2. The algorithm detects the lack of balance [350 ms]
- 3. The APO acts on the hips
 - Torque 0.2xBW [empirical]
 - To increase the foot
 - ground interaction
 - To push upward the CoM

Overview of the proposed strategy

Main issues:

1. Detecting the lack of balance

- How to do
- Is it feasible?
- Is it "on time"?
- 2. Counteracting the lack of balance
 - How to do
 - Is it effective?
- 3. Any other approach?

Materials and Methods

- Participants
 - 8 older adults (males, 69.9±5.1 ys)
 - 2 transfemoral amputees (age- and anthropetry- matched)
 - no other comorbidities
- Walking speed: self selected
 - elders: 0.89±0.11 m/s
 - amputees: 0.69±0.06 m/s
- Perturbation: unexpected slippage
 - elders: right foot
 - amputees: prosthetic foot
- Whole body 3D kinematics (34 MRKs)
- APO
 - Z Mode –> transparent
 - A Mode -> assistive

Counteracting the lack of balance

- Faster bipodal dipport
- Lower num. of Fecovering steps
- Modification of hip joint angle

Assessing the Stability: CoM vs BoS Margin of Stability

MoS < 0 [slightly] ---> controllable lack of balance

Assessing the Stability: CoM vs BoS Margin of Stability

Assessing the Stability: CoM vs BoS CoM Stability

Counteracting the lack of balance: is it effective?

Yes, it is!

Overview of the proposed strategy

Main issues:

1. Detecting the lack of balance

- How to do
- Is it feasible?
- Is it "on time"?
- 2. Counteracting the lack of balance
 - How to do
 - Is it effective?
- 3. Any other approach?

Counteracting the lack of balance: alternative strategies

Outline of the presentation

- Fall risk: what are we talking about?
- State of art
 - Assessing the fall risk
 - Detecting falls/lack or balance
 - Counteracting falls/lack of balance
- Wearable robot: the dream
- Our toolbox
 - SENLY
 - Active Pelvis Orthosis
- A possible strategy
 - Detection Algorithm
 - Assistive strategy
- Ongoing activities
 - Different perturbations
 - Other approaches for the detection
 - Robotic prosthesis

Conclusions

Is the proposed strategy effective after multi-directional slippages?

Aprigliano et al., Robotica 2019

Is the proposed strategy effective after multi-directional slippages?

No differences between Zmode (no assistance) and Amode (with assistance)

Is the proposed strategy effective after multi-directional slippages?

On, it is not effective! Why?

- ▶ MDT > 450 ms (too high)
- CLs APO cannot measure and control hip ab/adduction

Tuning parameters			ML slippages			
k _P	k _a	W	r	k	MDT [ms]	FA [%]
40	1	900	6	3.5	455±35	57
10	1	1000	10	3.5	467±21	79
40	1	1000	6	3.5	461±36	50

What about using IMUs? Detecting slippages

_____ x – AP

What about using IMUs?

Q. Can we estimate the MOS at run time? A. Yes, we can!

Robotic prosthesis

Tripping

1. perturbed foot; 2. spring-rope mechanisms; 3. treadmill; 4. footswitch under the unperturbed foot; 5. cambased braking mechanisms.

Tripping: detection based on HIP

Outline of the presentation

- Fall risk: what are we talking about?
- State of art
 - Assessing the fall risk
 - Detecting falls/lack or balance
 - Counteracting falls/lack of balance
- Wearable robot: the dream
- Our toolbox
 - SENLY
 - Active Pelvis Orthosis
- A possible strategy
 - Detection Algorithm
 - Assistive strategy
- Ongoing activities
 - Different perturbations
 - Other approaches for the detection
 - Robotic prosthesis
- Conclusions

Conclusions (2/3)

Q. Can we generalize the proposed strategy to different perturbations (e.g., tripping, obstacle avoidance)?

- A1. The "detection" procedure can be easily generalized even if tests in ecological conditions are required.
- A2. The APO-mediated assistive behavior needs to be investigated

Conclusions (3/3)

- **Q.** Any limit?
- A. A bunch of limits!!!

However, we hope to be on the right way.

Acknowledgments (1/2)

F. Aprigliano

- S. Micera
- V. Monaco
- P. Tropea
- D. Martelli

University of Ljubljana

CYBERLEGs ++

CYBERLEGs Plus Plus Project has received funding from the European Community's H2020 Research and Innovation Programme (H2020/2014-2020) under grant agreement n. 731931

Acknowledgments (2/2)

S. Micera V. Monaco

F. Aprigliano

References

- "A global report on falls prevention. Epidemiology of falls", S. Yoshida, WHO
- Robinovitch et al., "Video capture of the circumstances of falls in elderly people residing in long-term care: an observational study", Lancet 2013
- Stevens et al., "The costs of fatal and non-fatal falls among older adults", Inj. Prev. 2006
- Danielsen et al., "Increasing fall risk awareness using wearables: A fall risk awareness Protocol", J Biom. Inf. 2016
- Bagalà et al., "Evaluation of Accelerometer-Based Fall Detection Algorithms on Real-World Falls", PLOSOne 2012
- Hu and Qu, "Pre-impact fall detection", BioMed Eng Online 2016
- Tamura et al., "A wearable airbag to prevent fall injuries", IEEE TITB 2009
- Herr, "Exoskeletons and orthoses: classification, design challenges and future directions", JNER 2009
- Bassi Luciani et al., "Design and Evaluation of a new mechatronic platform for assessment and prevention of fall risks", JNER 2012
- Giovacchini et al., "A light-weight active orthosis for hip movement assistance", Rob and Aut Sys 2015
- Monaco et al., "An ecologically-controlled exoskeleton can improve balance recovery after slippage", Sci Rep 2017
- Tropea et al., "Detecting Slipping-Like Perturbations by Using Adaptive Oscillators", Ann Biom Eng 2014
- Orenduff et al., "How humans walk: bout duration, steps per bout, and rest duration", JRRD 2008
- Aprigliano et al., "Effectiveness of a Robot-Mediated Strategy While Counteracting Multidirectional Slippages", Robotica 2019 (in press)

Superiore nna

Counteracting balance loss by using wearable robotics

Speaker: Vito Monaco vito.monaco@santannapisa.it

Bari, 20 May 2019