ISTITUTO DI TECNOLOGIE DELLA COMUNICAZIONE, DELL'INFORMAZIONE E DELLA PERCEZIONE

) Scuola Superiore Sant'Anna

Exoskeletons & Physical Human-Robot Interaction Controls

Seminar

Relator: Domenico Chiaradia, PhD

Human-Robot Interaction Area

Email: domenico.chiaradia@santannapisa.it

May 6, 2019

Outline

Exoskeletons

- Applications
- Interactions
- Mechanical aspects

Passivity and Teleoperation

Interaction Limits

03

05

Scuola Superiore

Sant'Anna

DI TECNOLOGIE DELLA Comunicazione, Dell'Informazione

PERCEZIONE

- Time Domain Passivity Approach
- Interaction with remote environment
- Delay and Passivity for Bilateral Teleoperation

Call for Thesis Exosuit Demo

Exos

pHRI

P-HRI Controls

Interaction Control Taxonomy
Force Control
Interaction with a Virtual Environment

Soft Exosuit for Assistance

• Design and Control of a Soft Elbow Exosuit

02

Exoskeletons

Exo...what?

Hardiman, Mosher, 1965

Exoskeleton is a robot that can be worn and behaves like an external skeleton. It transmits forces to the wearer through its structure. Exoskeletons try to replicate human body kinematics.

Applications

Healthcare

TECNOLOGIE

ELL'INFORMA

ERCEZIONE

Scuola Superiore

Sant'Anna

DELLA

- Rehabilitation (post-stroke and spinal cord injury patients);
- Assistance;

ALEx, Percro, Pisa

Lopes, Twente Univ.

Maxx, ETH

Applications

- Healthcare
 - Rehabilitation (Post-stroke and spinal cord injury patients);
 - Assistance;
- Industrial/Military/Rescue
 - Power Augmentation
 - Assistance
 - Remote Operation

Body Extender, Percro

MATE, Comau (Passive)

H-Wex, Hyundai

Applications and Interactions

Rehabilitation

 Robot interacts with user and virtual environment

• Remote Operation \rightarrow

Robot interacts with user and real remote environment

Assistance

 Robot interacts with user

Mechanical aspects: from Rigid to Soft

DELLA

Sant'Anna

From Rigid to Soft

Introducing compliance in the actuation stage

• Series elastic actuators (SEA)^[1];

Scuola Superiore Sant'Anna

- Variable stiffness actuators (VSA)^[2];
- Variable impedance actuators (VIA)^[3];
- Soft materials \rightarrow safe and gentle interaction^[4].

[1] G. A. Pratt and M. M. Williamson, "Series elastic actuators", IEEE/RSJ International Conference on, 1995

[2] G. Tonietti, R. Schiavi, and A. Bicchi, "Design and control of a variable stiffness actuator for safe and fast physical human/robot interaction", in Robotics and Automation, ICRA, 2005

[3] B. Vanderborght, A. Albu-Schäffer, A. Bicchi, E. Burdet, D. G. Caldwell, R. Carloni, M. Catalano, O. Eiberger, W. Friedl, G. Ganesh et al., "Variable impedance actuators: A review", Robotics and autonomous systems, 2013.

[4] A. T. Asbeck, S. M. De Rossi, I. Galiana, Y. Ding, and C. J. Walsh, "Stronger, smarter, softer: next-generation wearable robots", IEEE Robotics & Automation Magazine, 2014.

P-HRI Controls

Theoretical tools

I TECNOLOGIE DELL OMUNICAZIONE ELL'INFORMAZION

Sant'Anna

ERCEZIONE

Non Back-drivability

Environment

 τ_e

M θ

Interaction Control Taxonomy^[5]

ISTITUTO DI TECNOLOGIE DELLA COMUNICAZIONE, DELL'INFORMAZIONE E DELLA PERCEZIONE Sant'Anna

[5] A. Calanca, R. Muradore, and P. Fiorini, "A review of algorithms for compliant control of stiff and fixed-compliance robots", IEEE/ASME Transactions on Mechatronics, 2016.

Interaction Controls

- **Serial Kinematics** •
- 5 DOF: 4 Actuated •

Scuola Superiore

Sant'Anna

ERCEZION

- Transmission Ratio (1:100) \rightarrow Not backdrivable
- 6 axis Force/Torque Sensor at e.e. •
- 150 N at the e.e. in every point of workspace ٠

Interaction Controls

Impedance Control (Explicit)

Impedance Control (Implicit)

WRES: Wrist Exoskeleton

- Low weight
- Optimal mass distribution
- High torque/mass ratio

Interaction with VE

ISTITUTO DI TECNOLOGIE DELLA COMUNICAZIONE, DELL'INFORMAZIONE E DELLA PERCEZIONE Scuola Superiore Sant'Anna

Impedance Control in Haptics

Automotive Gearshift Simulator

DI TECNOLOGIE DELLA COMUNICAZIONE, DELL'INFORMAZIONE E DELLA PERCEZIONE

Scuola Superiore

Sant'Anna

Interaction Controls

Admittance Control (Explicit)

Further details later!

Passivity and Teleoperation

Interaction Control Limits

- It is not possible to render and infinite stiffness
- Each device is characterized by a critical stiffness

Theoretical tools

Passivity

A system is passive if it absorbs more energy than the one returned

If we define Positive the input power (P),

$$\boldsymbol{P}=\boldsymbol{F}\ast\dot{\boldsymbol{x}}$$

 $P = F * \dot{x} = \frac{dE_{store}}{dt} + P_{diss}$

A system is passive if:

$$\dot{x}$$
 +
 F System -

 $E_{store} > E_{min},$ E_{store} is a storing energy function $P_{diss} > 0,$ P_{diss} is a dissipative power function

- 1. In a passive system the energy is stored or dissipated
- 2. The passive system cannot generate energy and can only return the stored energy
- Scuola Superiore 3. The energy returned by the system is limited by the stored energy

Theoretical tools

DELLA

ERCEZION

Time Domain Passivity Approach

ISTITUTO DI TECNOLOGIE DELLA COMUNICAZIONE, DELL'INFORMAZIONE E DELLA PERCEZIONE Scuola Sup Sant'Anna

[6] B. Hannaford and J.-H. Ryu, "Time-domain passivity control of haptic interfaces", IEEE Transactions on Robotics and Scuola Superiore Automation, 2002.

Interaction with remote env.

ISTITUTO DI TECNOLOGIE DELLA COMUNICAZIONE, DELLINFORMAZIONE E DELLA PERCEZIONE Sant'Anna

Interaction with remote env.

CENTAURO – Robust Mobility and Dexterous Manipulation in Disaster Response by Fullbody Telepresence in a Centaur-like Robot

Theoretical tools

Transparency

[14] D. A. Lawrence, "Stability and transparency in bilateral teleoperation", IEEE transactions on robotics and automation, 1993

Transparency and Teleoperation

With Position - Measured Force Control Schema

Effect of delay

80ms communication delay & NO Passivity Controller

Unstable interaction with remote environment

80ms communication delay & Passivity Controller ON

Stable interaction with remote environment

BUT, Loss of transparency!

Soft Exosuit for Assistance

Why a soft structure?

• No rigid structures \rightarrow no misalignment between the robot's and user's joints \rightarrow no discomfort

Neurological musculoskeletal disorders (WMSD)

• On the complementary way of robotic rehabilitation based on exercising workstation, and rigid exoskeleton, the Exosuit strategy emphasize <u>portability</u> and <u>ergonomics</u> for the following applications:

- Stroke/SCI assistance in activities of daily living
- Walking support/stabilization

Exosuits, Harvard

SuperFlex, SRI

ISTITUTO DI TECNOLOGIE DELLA COMUNICAZIONE, DELL'INFORMAZIONE E DELLA PERCEZIONE Scuola Superiore Sant'Anna

Exosuit Effectiveness

- Exosuits have been proven to be successful in:
 - Reducing the metabolic cost of human walking in both stroke patients ^[7] and healthy subjects ^[8];
 - Lowering the muscular effort required for:
 - Upper limb movements;
 - Sit-to-stand transitions;
 - Aiding extension and flexion of the fingers in stroke and spinal cord injury patients ^[9].

[7] L. N. Awad et al., "A soft robotic exosuit improves walking in patients after stroke," Sci. Transl. Med., 2017.[8] B. T. Quinlivan et al., "Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit," Sci. Robot., 2017.

[9] H. In and K.-j. Cho, "Exo-Glove : Soft wearable robot for the hand using soft tendon routing system," IEEE Robot. Autom., 2015.

Design & Control of a Soft Elbow Exosuit

Objectives:

- Design of a soft elbow exosuit for assistance in ADL tasks:
 - Arm's load relieving;
 - Muscular effort reduction in moving and sustaining external loads;
- The assistive exosuit should not affect the human kinematics and has to be comfortable;
- Develop an untethered control architecture:
 - Embeddable in a box, simple to wear;
 - Robust and safe.

Suit's Design

- The exosuit comprises an actuation stage, driving a pair of tendons, a wearable component made of fabric and joint sensors.
- The elbow angle is measured by a capacitive stretch sensor made of silicone. A load cell embedded in the suit reads the assistive torques.

Scuola Superiore

Sant'Anna

Suit's Design

- The actuation stage is located proximally, i.e. worn as a backpack, and transmits power to the suit via Bowden cables. It is composed by:
 - Brushless motor (70W)+ 28:1 reduction planetary gearhead;
 - Incremental encoder;
 - Spool around which two tendons (superelastic NiTi wire, Ø 0.5mm) are wrapped in opposite directions;
 - Plastic casing + 3 ball bearings keep the tendons from derailing when they're slack.

Control Strategy

• Control strategy is to follow the user's elbow movements whilst compensating for gravity:

Control Stategy

Assistive Torque Estimator

$$h_f(\phi_e) = 2\sqrt{a^2 + b^2} \cos\left(\tan^{-1}\left(\frac{a}{b}\right) + \frac{\phi_e}{2}\right) - 2b$$

 $h_e(\phi_e) = R\phi_e$

Control Stategy

Desired velocity computation

From arm dynamics

$$\tau = \tau_h + \tau_a = \frac{2}{3}ml^2\ddot{\phi_e} + b_e\dot{\phi_e} + mgl_c\sin\phi_e$$

The human effort is

DI TECNOLOGIE DELLA COMUNICAZIONE, DELL'INFORMAZIONE E DELLA

PERCEZIONE

Scuola Superiore

Sant'Anna

$$\tau_h = \frac{2}{3}ml^2\ddot{\phi_e} + b_e\dot{\phi_e} + \frac{mgl_c\sin\phi_e}{\tau_g} - \tau_a$$

For smooth movements we can neglect the term $\frac{2}{3}ml^2\ddot{\phi_e}$

$$\dot{\theta}_{m,d} = K_g(\hat{\tau}_a - \hat{\tau}_g) + K_s \hat{\phi}_e$$

Validation - Experiments

Protocol

- Sinusoidal visual reference for the human;
- 3 velocities: 20%, 30% and 60% of ADL velocity;
- 1.25 Kg load;
- EMG of biceps brachii and Joint Angle acquisition.

Validation - Results

Joint Angles and Torques

• The exosuit relieves the subject from nearly 77% of the total moment required to perform the movement.

Validation - Results

• EMG Activation decreases by 64.5% on average when the exosuit is worn.

Call for Thesis

Call for Thesis

- **Topic #1:** Development and Intelligent Control Strategies of an Assistive Soft Exosuit for the upper-body
 - Use of EMG signals for control
- **Topic #2:** Development and Control Strategies for an Assistive Soft Glove

• **Topic #3:** Development of Soft Robotic Hand Control Strategies for Telemanipulation and Telerehabilitation

Call for Thesis

• **Topic #4:** Control Strategies for an Assistive Leg Exoskeleton

- **Topic #5:** Control of robots for maintenance and inspections
 - UGV
 - Vision-based control
- **Topic #6:** Development of a Driving Co-Pilot for assistance and driving style evaluation

Thank you for the attention!

Domenico Chiaradia Email: domenico.chiaradia@santannapisa.it

