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Exoskeletons
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Exo…what?

Exoskeleton is a robot that can be worn and behaves like an external skeleton.

It transmits forces to the wearer through its structure.

Exoskeletons try to replicate human body kinematics.

Hardiman, Mosher, 1965
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Applications

ALEx, Percro, Pisa Lopes, Twente Univ.

•Healthcare 

•Rehabilitation (post-stroke 

and spinal cord injury 

patients);

•Assistance;

Elbow Exosuit, 

Heidelberg University & Percro

Maxx, ETH
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Applications

•Healthcare 

•Rehabilitation (Post-stroke 

and spinal cord injury 

patients);

•Assistance;

• Industrial/Military/Rescue

•Power Augmentation

•Assistance

•Remote Operation

H-Wex, Hyundai MATE, Comau

(Passive)

Body Extender, Percro
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Applications and Interactions

• Rehabilitation →

• Remote Operation →

• Assistance →

Robot interacts with user and virtual 

environment

Robot interacts with user and real 
remote environment

Robot interacts with user
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Mechanical aspects: 
from Rigid to Soft
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From Rigid to Soft

• Introducing compliance in the actuation stage

•Series elastic actuators (SEA)[1];

•Variable stiffness actuators (VSA)[2]; 

•Variable impedance actuators (VIA)[3];

•Soft materials → safe and gentle interaction[4].

[1] G. A. Pratt and M. M. Williamson, “Series elastic actuators”, IEEE/RSJ International Conference on, 1995

[2] G. Tonietti, R. Schiavi, and A. Bicchi, “Design and control of a variable stiffness actuator for safe and fast 

physical human/robot interaction”, in Robotics and Automation, ICRA, 2005

[3] B. Vanderborght, A. Albu-Schäffer, A. Bicchi, E. Burdet, D. G. Caldwell, R. Carloni, M. Catalano, O. Eiberger, 

W. Friedl, G. Ganesh et al., “Variable impedance actuators: A review”, Robotics and autonomous systems, 2013.

[4] A. T. Asbeck, S. M. De Rossi, I. Galiana, Y. Ding, and C. J. Walsh, “Stronger, smarter, softer: next-generation 

wearable robots”, IEEE Robotics & Automation Magazine, 2014.
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P-HRI Controls
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Theoretical tools
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Interaction Control Taxonomy[5]

Interaction

control

Passive Active

Position 

control

Direct force 

control

Indirect force 

control

Impedance

control

Admittance

control

[5] A. Calanca, R. Muradore, and P. Fiorini, “A review of algorithms for compliant control of stiff and fixed-compliance 

robots”, IEEE/ASME Transactions on Mechatronics, 2016.
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Interaction Controls

Environment

Device 𝜃

𝜏𝑒+

Force

control

_𝜏𝑟

+ _

Direct Force/Torque Control

Exos

JOINT 1

JOINT 2

JOINT 3

JOINT 4

JOINT 

5

F/T 

SENSOR• Serial Kinematics

• 5 DOF: 4 Actuated

• Transmission Ratio (1:100) → Not backdrivable

• 3 Joint Torque Sensors

• 6 axis Force/Torque Sensor at e.e.

• 150 N at the e.e. in every point of workspace

The Rehab-Exos
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Interaction Controls
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WRES: Wrist Exoskeleton

• Low weight

• Optimal mass distribution

• High torque/mass ratio
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Interaction with VE
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Impedance Control in Haptics
Automotive Gearshift Simulator
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Interaction Controls

Environment

Device 𝜃
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Exos

Used for:

Further details later!
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Passivity and 
Teleoperation
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Interaction Control Limits

• It is not possible to render and infinite stiffness

• Each device is characterized by a critical stiffness
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Theoretical tools
Passivity

A system is passive if it absorbs more energy than the one returned

If we define Positive the input power (P),

𝑷 = 𝑭 ∗ ሶ𝒙

A system is passive if:

𝑷 = 𝑭 ∗ ሶ𝒙 =
𝒅𝑬𝒔𝒕𝒐𝒓𝒆

𝒅𝒕
+ 𝑷𝒅𝒊𝒔𝒔

where

𝑬𝒔𝒕𝒐𝒓𝒆 > 𝑬𝒎𝒊𝒏, 𝑬𝒔𝒕𝒐𝒓𝒆 is a storing energy function

𝑷𝒅𝒊𝒔𝒔 > 𝟎, 𝑷𝒅𝒊𝒔𝒔 is a dissipative power function

1. In a passive system the energy is stored or dissipated

2. The passive system cannot generate energy and can only return the stored energy

3. The energy returned by the system is limited by the stored energy

System

ሶ𝒙

+

−

𝐹
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Theoretical tools
Passivity – Effect of Quantization

Consider the energy stored in a spring with stiffness K

𝑭 = 𝑲 ∗ 𝒙 (Hook’s law)

System

ሶ𝒙

+

−

𝐹

𝐸 =
1

2
𝑘𝑥2

F

x

x

F

Press phase

x

F

Release phase

If we consider quantization

If we consider a constant

velocity and a sample time

of T, the system generate

an amount of energy:

𝑘 ሶ𝑥2𝑇2
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Time Domain Passivity Approach

Human

Operator

Haptic

Interface

Virtual

Environment
𝜶

ሶ𝑥ℎ

𝑓ℎ

𝑓𝑐 𝑓𝑣𝑒

ሶ𝑥𝑐 ሶ𝑥𝑣𝑒

+

+

+

−
𝑓𝑃𝐶

[6] B. Hannaford and J.-H. Ryu, “Time-domain passivity control of haptic interfaces”, IEEE Transactions on Robotics and 

Automation, 2002.
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Interaction with remote env.
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Interaction with remote env.

CENTAURO – Robust Mobility and Dexterous Manipulation in 

Disaster Response by Fullbody Telepresence in a Centaur-like Robot

Commands

Feedbacks
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Theoretical tools

𝑍ℎ

Environment

Interface 𝑍𝑒

Operator

𝑍𝑖 𝑍𝑒

𝐹ℎ 𝐹𝑒

+

−

𝑉ℎ

+

−

𝑉𝑒

Transparency

𝑭𝒆 = 𝒁𝒆 ∗ 𝑽𝒆

𝑭𝒉 = 𝒁𝒊 ∗ 𝑽𝒉

Environment force

Human force

The interface is transparent if [14]

𝒁𝒊 = 𝒁𝒆

[14] D. A. Lawrence, “Stability and transparency in bilateral teleoperation”, IEEE transactions on robotics and 

automation, 1993
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Transparency and Teleoperation

MASTER

SLAVE

EE Velocities

EE Measured Forces

With Position - Measured Force Control Schema



© 2019 Scuola Superiore Sant’Anna

Effect of delay

80ms communication delay & 

NO Passivity Controller

80ms communication delay & 

Passivity Controller ON

Unstable interaction with remote 

environment

Stable interaction with remote 

environment

BUT, Loss of transparency!
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Soft Exosuit for 
Assistance
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• No rigid structures → no misalignment between the robot’s and 

user’s joints → no discomfort

Neurological musculoskeletal disorders (WMSD)

• On the complementary way of robotic rehabilitation based on
exercising workstation, and rigid exoskeleton, the Exosuit strategy
emphasize portability and ergonomics for the following applications:

– Stroke/SCI assistance in activities of daily living 

– Walking support/stabilization 

Why a soft structure?
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Exosuits, Harvard
Polyglove, SNU

SuperFlex, SRI
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• Exosuits have been proven to be successful in:

– Reducing the metabolic cost of human walking in both 

stroke patients [7] and healthy subjects [8];

– Lowering the muscular effort required for:

• Upper limb movements;

• Sit-to-stand transitions;

– Aiding extension and flexion of the fingers in stroke and 

spinal cord injury patients [9].

[7] L. N. Awad et al., “A soft robotic exosuit improves walking in patients after stroke,” Sci. Transl. Med., 2017.

[8] B. T. Quinlivan et al., “Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft

exosuit,” Sci. Robot., 2017.

Exosuit Effectiveness

[9] H. In and K.-j. Cho, “Exo-Glove : Soft wearable robot for the hand using soft tendon routing system,” IEEE Robot.

Autom., 2015.
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Design & Control of a Soft Elbow
Exosuit

Objectives:

• Design of a soft elbow exosuit for assistance in ADL tasks:

– Arm’s load relieving;

– Muscular effort reduction in moving and sustaining external
loads;

• The assistive exosuit should not affect the human kinematics
and has to be comfortable;

• Develop an untethered control architecture:

– Embeddable in a box, simple to wear;

– Robust and safe.
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Suit’s Design
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∅

Suit’s Design
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Control Strategy
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Control Stategy

Assistive Torque Estimator
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Control Stategy

𝝉𝒈

Desired velocity computation
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Validation - Experiments
Protocol
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Validation - Results
Joint Angles and Torques
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Validation - Results
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Call for Thesis
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Call for Thesis

• Topic #1: Development and Intelligent Control Strategies of an 
Assistive Soft Exosuit for the upper-body

– Use of EMG signals for control

• Topic #2: Development and Control Strategies for an Assistive 

Soft Glove

• Topic #3: Development of Soft Robotic Hand

Control Strategies for Telemanipulation and Telerehabilitation
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Call for Thesis

• Topic #5: Control of robots for maintenance 

and inspections

• UGV

• Vision-based control

• Topic #6: Development of a Driving Co-Pilot for assistance and 

driving style evaluation

• Topic #4: Control Strategies for an Assistive Leg Exoskeleton
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Thank you
for the attention!

Domenico Chiaradia
Email: domenico.chiaradia@santannapisa.it


