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Outline
• Next-generation sequencing

• Sequencing strategies

• TCGA repository

• Differential expression analysis

• Negative binomial model

• Example: lncRNAs in prostate cancer in relation to Gleason score



DNA sequencing timeline



Sanger method



Sanger sequencing reached its technical limits

• Only modestly parallel (394 lanes/machine)

• Long read lengths (500-900 bp) &  >99.9% correct

• Need to clone the DNA to obtain enough for sequencing reaction

• cost for typical Sanger sequencing is $5-6/sample with reliable 500 bp 
of sequence







Important sequencing parameters



A) Fragment DNA

B) Repair ends/Add A overhang DNA

C) Ligate adapters

D) Select ligated DNA

E) Attach DNA to flow cell

F) Bridge amplification

G) Generate clusters

H) Anneal sequencing primer

I)  Extend 1st base, read & deblock

J)  Repeat to extend strand

K)  Generate base calls

Library Prep:
~ 6 hours

Cluster generation
~ 6 hours

Sequencing
2-6 days

Illumina NGS



Ion Torrent – measures pH changes

Done on a semi-
conductor chip



Ion Torrent workflow



RNA-Seq: a powerful approach



Transcript isoforms





Repositories









What we have….

The Cancer Genome Atlas (TCGA) https://portal.gdc.cancer.gov/
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An update (12th August 2018):

You should abandon RPKM / FPKM normalisation. They

are not ideal where cross-sample differential expression

analysis is your aim; indeed, they render samples

incomparable via differential expression analysis: Please

read this: A comprehensive evaluation of normalization 

methods for Illumina high-throughput RNA sequencing 

data analysis

In their key points:
The Total Count and RPKM normalization methods, both of 
which are still widely in use, are ineffective and should be 
definitively abandoned in the context of differential analysis.

https://www.ncbi.nlm.nih.gov/pubmed/22988256








For each position i in the read, a set S(i) is defined as the set of all features overlapping position i.

Then, consider the set S, which is (with i running through all position within the read)

• the union of all the sets S(i) for mode union.

• the intersection of all the sets S(i) for mode intersection-strict.

• the intersection of all non-empty sets S(i) for mode intersection-nonempty.



Sequencing count data Sequencing counting rules



A FIRST INTUITION

1. In a standard sequencing experiment (RNA-Seq), we

map the sequencing reads to the reference genome

and count how many reads fall within a given gene (or 

exon). 

2. This means that the input for the statistical analysis are 

discrete non-negative integers (“counts”) for each gene 

in each sample. 

3. The total number of reads for each sample tends to be 

in the millions, while the counts per gene vary

considerably but tend to be in the tens, hundreds or 

thousands. Therefore, the chance of a given read to be 

mapped to any specific gene is rather small. 

4. Discrete events that are sampled out of a large pool 

with low probability sounds very much like a Poisson
process. And indeed it is. In fact, earlier iterations of 

RNA-Seq analysis modeled sequencing data as a 

Poisson distribution. There is one problem, however. 

The variability of read counts in sequencing experiments

tends to be larger than the Poisson distribution allows.



If we assume that our samples are biological replicates, it

is not surprising that the same transcript is present at

slightly different levels in each sample, even under the 

same conditions. In other words, the Poisson process in 

each sample has a slightly different expected count

parameter. This is the source of the “extra” variance

(overdispersion) we observe in sequencing data. In the 

framework of the NB distribution, it is accounted for by 

allowing Gamma-distributed uncertainty about the 

expected counts (the Poisson rate) for each gene.



It is obvious that the variance of counts is generally

greater than their mean, especially for genes expressed at

a higher level. This phenomenon is called

“overdispersion“. The NB distribution is similar to a 

Poisson distribution but has an extra parameter called the 

“clumping” or “dispersion” parameter. It is like a Poisson

distribution with more variance.



Example: lncRNAs in prostate cancer in relation to Gleason score



Prostate cancer



Prostate cancer diagnostics: present and future





Project: TCGA-PRAD (Prostate 
Adenocarcinoma)



Project: TCGA-PRAD (Prostate 
Adenocarcinoma)



Project: TCGA-PRAD (Prostate 
Adenocarcinoma)



Outline
• Example: lncRNAs in prostate cancer in relation to Gleason score

• Input Data preparation

• MA Plots

• Dimensionality Reduction
• PCA

• t-SNE

• Statistical distributions
• Poisson

• Negative binomial

• Statistical significance
• 𝑝-values 

• Significant genes



Prostate cancer – read counts
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Prostate cancer – clinical data



Dimensionality Reduction
• Prostate cancer count table

• 500 features

• 499 samples

• Lot of features to handle in transcriptomic data

• Example: Pasilla dataset
• 14,599 features

• 7 samples

• For visualization and analysis purposes it is good to reduce the 
dimensionality. Possible techniques:
• PCA 

• t-SNE



PCA
• Principal component analysis (PCA) is a statistical procedure that

uses an orthogonal transformation to convert a set of observations of
possibly correlated variables (entities each of which takes on various
numerical values) into a set of values of linearly uncorrelated
variables called principal components.

• This transformation is defined in such a way that the first principal
component has the largest possible variance (that is, accounts for as
much of the variability in the data as possible), and each succeeding
component in turn has the highest variance possible under the
constraint that it is orthogonal to the preceding components.

• The resulting vectors (each being a linear combination of the
variables and containing 𝑛 observations) are an uncorrelated
orthogonal basis set. PCA is sensitive to the relative scaling of the
original variables.



PCA – MATLAB 
coeff = pca(X)

• returns the principal component coefficients, also known as loadings,
for the 𝑛-by-𝑝 data matrix X.

• Rows of X correspond to observations and columns correspond to
variables. There are 𝑛 observations and 𝑝 variables.

• The coefficient matrix is 𝑝-by-𝑝. Each column of coeff contains
coefficients for one principal component, and the columns are in
descending order of component variance. By default, pca centers the
data and uses the singular value decomposition (SVD) algorithm.



PCA – Scree plot



PCA – bi-plot PC1 and PC2



PCA – bi-plot PC1 and PC3



PCA – bi-plot PC2 and PC3



PCA – tri-plot PC1, PC2 and PC3



t-SNE
• It is a nonlinear dimensionality reduction technique well-suited for

embedding high-dimensional data for visualization in a low-
dimensional space of 2 or 3 dimensions.

• Specifically, it models each high-dimensional object by a 2D or 3D
point in such a way that similar objects are modeled by nearby points
and dissimilar objects are modeled by distant points with high
probability.



t-SNE
• The t-SNE algorithm comprises two main stages:

1. t-SNE constructs a probability distribution over pairs of high-dimensional
objects in such a way that similar objects have a high probability of being
picked while dissimilar points have an extremely small probability of being
picked.

2. t-SNE defines a similar probability distribution over the points in the low-
dimensional map, and it minimizes the Kullback–Leibler divergence
between the two distributions with respect to the locations of the points in
the map.

• Hyper-parameter: perplexity
• It is basically the effective number of neighbors for any point, and t-SNE works

relatively well for any value between 5 and 50. Larger perplexities will take
more global structure into account, whereas smaller perplexities will make
the embeddings more locally focused.



t-SNE bi-plot



t-SNE tri-plot



t-SNE – MATLAB 
Y = tsne(X) 

returns a matrix of two-dimensional
embeddings of the high-dimensional rows
of X.

X - Data points

specified as an n-by-m matrix, where each 
row is one m-dimensional point.

Y — Embedded points

returned as an n-by-NumDimensions
matrix. Each row represents one 
embedded point. 



Fold Change
• Fold change is a measure describing how much a quantity changes

between an original and a subsequent measurement.

• It is defined as the ratio between the two quantities; for quantities A and B,
then the fold change of B with respect to A is B/A.

• In our case, we define Fold Change as:

foldChange = meanHigh ./ meanLow;

• You can look at the difference of the gene expression among two
conditions, by calculating the fold change (FC) for each gene, i.e. the ratio
between the counts in the high gleason group over the counts in the low
gleason group.

• Generally these ratios are considered in the log2 scale, so that any change
is symmetric with respect to zero.

• A ratio of 1/2 or 2/1 corresponds to -1 or +1 in the log scale.



MA plot



Hypothesis Testing
• Based on a count table, we want to detect differentially expressed

genes between different conditions.
• How can we detect genes for which the counts of reads change between

conditions more systematically than as expected by chance?

• We would like to use statistical testing to decide whether, for a given
gene, an observed difference in read counts is significant, that is,
whether it is greater than what would be expected just due to natural
random variation.

• Null hypothesis 𝐻0:
• the gene 𝑔 is not differentially expressed between the conditions

• Alternative hypothesis 𝐻1:
• the gene 𝑔 is differentially expressed between the conditions



Hypothesis Testing
• How to quantify the difference?

• The statistical tests do not give a simple answer of whether the
hypothesis is true or not. What a statistical test determines is how
likely that null hypothesis is to be true.

• After a test statistic is computed, it is often converted to a 𝑝-value.
Then the difference is quantified in terms of the 𝑝-value.

• If the 𝑝-value is small then the null hypothesis is deemed to be untrue
and it is rejected in favour of the alternative.

• The 𝑝-value is the probability of seeing a result as extreme or more
extreme than the observed data, when the null hypothesis is true.

• It is a usual convention in biology to use a critical 𝑝-value of 0.05.



Type of errors in tests



Poisson distribution
• The Poisson distribution is a discrete probability distribution that

expresses the probability of a given number of events occurring in a
fixed interval of time or space if these events occur with a known
constant rate and independently of the time since the last event.



Poisson distribution



Poisson distribution
• We denote Poisson distribution with

𝑃𝑜𝑖𝑠(𝜆)

• 𝜆 ∈ ℝ+ is the rate

• Probability mass function (pmf)

𝑓 𝑘; 𝜆 = Pr 𝑋 = 𝑘 =
𝜆𝑘𝑒−𝜆

𝑘!

• Mean

𝜇 = 𝜆

• Variance

𝜎2 = λ



Negative binomial distribution
• The negative binomial distribution is a discrete probability

distribution of the number of successes in a sequence of independent
and identically distributed Bernoulli trials before a specified (non-
random) number of failures (denoted 𝑟) occurs.

• For example, if we define a 1 as failure, all non-1s as successes, and
we throw a dice repeatedly until 1 appears the 3rd time
(𝑟 = 3 failures), then the probability distribution of the number of
non-1s that appeared will be a negative binomial distribution.



Negative binomial distribution
• We denote negative binomial distribution with:

𝑁𝐵(𝑟, 𝑝)

• 𝑟 > 0 is the number of failures until the experiment is stopped

• 𝑝 ∈ (0,1) is the probability of success for each experiment

• 𝑘 is the number of successes

• Probability mass function (pmf)

𝑓 𝑘; 𝑟, 𝑝 = Pr 𝑋 = 𝑘 =
𝑘 + 𝑟 − 1

𝑘
1 − 𝑝 𝑟𝑝𝑘

• Mean

𝜇 =
𝑝𝑟

1 − 𝑝

• Variance

𝜎2 =
𝑝𝑟

1 − 𝑝 2
= 𝜇 +

𝜇2

𝑟



Negative binomial distribution



Modeling count data



Modeling count data



Modeling count data
𝐾𝑔: sequence reads assigned to a particular region 𝑔

𝑝𝑔: proportion of DNA fragments arising from the region 𝑔

𝐾𝑔 = 0,1,2, … , 𝑛 (𝑛 + 1 possible discrete values)

𝑛: total number of sequenced reads

We want to estimate Pr(𝐾𝑔 = 𝑘)

If there are 𝑘 aligned reads to region 𝑔, then must be 𝑛 − 𝑘 not aligned to region 𝑔. 

The probability of this is given by: 𝑝𝑘 1 − 𝑝 𝑛−𝑘

The number of ways of arranging 𝑘 successes in 𝑛 trials is:

𝑛

𝑘
=

𝑛!

𝑘! 𝑛 − 𝑘 !

Then, the probability of 𝑘 successes in 𝑛 independent trials is:

𝑃 𝐾𝑔 = 𝑘 =
𝑛

𝑘
𝑝𝑘 1 − 𝑝 𝑛−𝑘

This is the Binomial distribution, which we denote 𝐾𝑔 ~ 𝐵𝑖𝑛(𝑛, 𝑝)



Modeling count data

𝑛 → ∞

𝑝 → 0

𝜆 → 𝑛𝑝

𝐵𝑖𝑛 𝑛, 𝑝 → 𝑃𝑜𝑖𝑠(𝜆)



Modeling count data



Modeling count data



Biological noise: overdispersion



Bioinformatics Toolbox – nbintest()
• test = nbintest(X,Y) performs a hypothesis test that two

independent samples of short-read count data, in each row of X and Y,
come from distributions with equal means under the assumptions that:
• Short-read counts are modeled using the negative binomial distribution.

• Variance and mean of data in each row are linked through a regression function
along all the rows.

• test is a NegativeBinomialTest object with two-sided 𝑝-values
stored in the pValue property.

• Use this function when you want to perform an unpaired hypothesis test
for short-read count data (from high-throughput assays such as RNA-Seq or
ChIP-Seq) with small sample sizes (in the order of tens at most). For
instance, use this function to decide if observed differences in read counts
between two conditions are significant for given genes.



Bioinformatics Toolbox – nbintest()

'VarianceLink'

Linkage type between the variance and mean

➢'LocalRegression' The variance is the sum of the shot noise term (mean) and a locally

regressed nonparametric smooth function of the mean as described in. This option is the default.

Use this option if your data is overdispersed and has more than 1000 rows (genes).

➢'Constant' The variance is the sum of the shot noise term (mean) and a constant multiplied

by the squared mean. This method uses all the rows in the data to estimate the constant. Use this

option if your data is overdispersed and has less than 1000 rows.

➢'Identity' The variance is equal to the mean as described in. Counts are therefore modeled

by the Poisson distribution individually for each row of X and Y. Use this option if your data has

few genes and the regression between the variance and mean is not possible because of very

small number of samples or replicates. This option is not recommended for overdispersed data.



Variance Link – pasilla



Variance Link – prostate cancer



𝑝-values
• The output of nbintest includes a vector of 𝑝-values. A 𝑝-value

indicates the probability that a change in expression as strong as the
one observed (or even stronger) would occur under the null
hypothesis, i.e. the conditions have no effect on gene expression.

• In the histogram of the 𝑝-values we observe an enrichment of low
values (due to differentially expressed genes), whereas other values
are uniformly spread (due to non-differentially expressed genes).

• The enrichment of values equal to 1 are due to genes with very low
counts.



𝑝-values histogram



Adjusted 𝑝-values
• Use mafdr function for obtaining adjusted 𝑝-values

FDR = mafdr(PValues)

returns FDR that contains a positive false discovery rate (pFDR) for each entry in
PValues using the procedure introduced by Storey (2002).

PValues contains one 𝑝-value for each feature (for example, a gene) in a data set.

• Optional parameter 'BHFDR' — Flag to use linear step-up procedure

Flag to use the linear step-up procedure introduced by Benjamini and Hochberg
(1995), specified as the comma-separated pair consisting of 'BHFDR' and true

or false.

The default value is false, that is, the function uses the procedure introduced by
Storey (2002).



Benjamini-Hochberg adjustment
• The Benjamini-Hochberg (BH) adjustment is a statistical method that provides an

adjusted 𝑝-value answering the following question: what would be the fraction of false
positives if all the genes with adjusted 𝑝-values below a given threshold were considered
significant?

• Set a threshold of 0.1 for the adjusted 𝑝-values, equivalent to consider a 10% false
positives as acceptable, and identify the genes that are significantly expressed by
considering all the genes with adjusted 𝑝-values below this threshold.

• We define a significant gene if adjusted 𝑝-value is less than 0.1
% compute the adjusted P-values (BH correction)

padj = mafdr(tLocal.pValue,'BHFDR',true);

% add to the existing table

geneTable.pvalue = tLocal.pValue;

geneTable.padj = padj;

% create a table with significant genes

sig = geneTable.padj< 0.1;



Significant Genes



Significant Genes
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