Bioinformatics and Big Data Analytics

Outliers Detection

Eng. Nicola Altini, Ph.D. Student
Eng. Giacomo Donato Cascarano, Ph.D. Student
Prof. Eng. Vitoantonio Bevilacqua, Ph.D.

Mean and Standard Deviation in MATLAB

INE)

Mean and Standard Deviation in MATLAB

(apulian
bioengineering

Mean and Standard Deviation in MATLAB

INE)

Outliers detection with standard deviation

(apulian
bioengineering

Outliers detection with standard deviation

- The 68-95-99.7 rule, also known as the empirical rule, is a shorthand used to remember the percentage of values that lie within a band around the mean in a normal distribution with a width of two, four and six standard deviations, respectively; more accurately, 68.27\%, 95.45% and 99.73% of the values lie within one, two and three standard deviations of the mean, respectively.
- In the case of normally distributed data, the three sigma rule means that roughly 1 in 22 observations will differ by twice the standard deviation or more from the mean, and 1 in 370 will deviate by three times the standard deviation.
ine 3

Outliers detection with standard deviation

- $68.27 \%, 95.45 \%$ and 99.73% of the values lie within one, two and three standard deviations of the mean, respectively.

$$
\begin{aligned}
& \operatorname{Pr}(\mu-1 \sigma<X<\mu+1 \sigma) \cong 0.6827 \\
& \operatorname{Pr}(\mu-2 \sigma<X<\mu+2 \sigma) \cong 0.9545 \\
& \operatorname{Pr}(\mu-3 \sigma<X<\mu+3 \sigma) \cong 0.9973
\end{aligned}
$$

- Rule for outlier detection with standard deviation:
- If data $<\mu-3 \sigma$ or data $>\mu+3 \sigma$, then data is considered an outlier.
ine

Outliers detection with standard deviation

iNe

Median

- The median is the value separating the higher half
from the lower half of a data sample, a population or a probability distribution. For a data set, it may be thought of as the "middle" value.
- The basic advantage of the median in describing data compared to the mean (often simply described as the "average") is that it is not skewed so much by a small proportion of extremely large or small values, and so it may give a better idea of a "typical" value.

mode

- For example, in understanding statistics like household income or assets, which vary greatly, the mean may be skewed by a small number of extremely high or low values.

mean

IN2

Quartiles

- A quartile is a type of quantile which divides the number of data points into four more or less equal parts, or quarters.
- The first quartile (Q1) is defined as the middle number between the smallest number and the median of the data set. It is also known as the lower quartile or the 25th empirical quartile and it marks where 25% of the data is below or to the left of it (if data is ordered on a timeline from smallest to largest).
- The second quartile (Q 2) is the median of the data and 50% of the data lies below this point.
- The third quartile (Q3) is the middle value between the median and the highest value of the data set. It is also known as the upper quartile or the 75th empirical quartile and 75% of the data lies below this point.
$\square \begin{aligned} & \text { DIPARTIMENTO DI } \\ & \text { INGEGNERIA ELETTRICA } \\ & \text { E DELLIINFORMAZIONE }\end{aligned}$

Quartiles

Box plot

- Box plots are a tool for graphically depicting groups of numerical data through their quartiles. Box plots may also have lines extending from the boxes (whiskers) indicating variability outside the upper and lower quartiles, hence the terms box-and-whisker plot and box-and-whisker diagram. Outliers may be plotted as individual points.
- Box plots are non-parametric: they display variation in samples of a statistical population without making any assumptions of the underlying statistical distribution

IN ${ }^{3}$

Box plot

- Median (Q2 / 50th Percentile): the middle value of the dataset.
- First quartile (Q1 / 25th Percentile): is also known as the lower quartile $q n(0.25)$ and is the middle value between the smallest number (not the minimum) and the median of the dataset.
- Third quartile (Q3 / 75th Percentile): is also known as the upper quartile qn(0.75) and is the middle value between the largest number (not the maximum) and the median of the dataset.
- Interquartile Range (IQR): is the distance between the upper and lower quartile.

$$
I Q R=Q 3-Q 1
$$

INe

Skewness example

Example Displaying Skewness

Basic Statistics in MATLAB

- Mean value of array

$$
\mathrm{M}=\operatorname{mean}(\mathrm{A})
$$

- Variance

$$
V=\operatorname{var}(A)
$$

- Standard deviation

$$
S=\operatorname{std}(A)
$$

- Minimum or maximum elements of an array

$$
\begin{aligned}
& \mathrm{M}=\min (\mathrm{A}) \\
& \mathrm{M}=\max (\mathrm{A})
\end{aligned}
$$

- Boxplot of an array
boxplot(X)

Boxplot in MATLAB

Boxplot in MATLAB

Boxplot in MATLAB

Outliers detection with quartiles

- The interquartile range ($I Q R$) can be used to identify outliers in a data set.

$$
I Q R=Q 3-Q 1
$$

- Rule for outlier detection with $I Q R$:
- If data $<Q 1-1.5 * I Q R$ or data $>Q 3+1.5 * I Q R$, then data is considered an outlier.

Outliers detection with quartiles

References

- Wikipedia
- Median.

URL: https://en.wikipedia.org/wiki/Median

- Quartile.

URL: https://en.wikipedia.org/wiki/Quartile

- Boxplot.

URL: https://en.wikipedia.org/wiki/Box plot

