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Cluster Analysis



Cluster Analysis
• Cluster analysis methods split the set of patterns into subsets

(clusters) based on the mutual similarity of subset elements. Objects
with dissimilar characteristics lie in different clusters.
• Cluster analysis itself is not one specific algorithm, but the general

task to be solved. It can be achieved by various algorithms that differ
significantly in their understanding of what constitutes a cluster and
how to efficiently find them. Popular notions of clusters include
groups with small distances between cluster members, dense areas of
the data space, intervals or particular statistical distributions.



Cluster Analysis
• Clustering can therefore be formulated as a multi-objective

optimization problem. The appropriate clustering algorithm and
parameter settings (including parameters such as the distance
function to use, a density threshold or the number of expected
clusters) depend on the individual data set and intended use of the
results.
• Cluster analysis as such is not an automatic task, but an iterative

process of knowledge discovery or interactive multi-objective
optimization that involves trial and failure. It is often necessary to
modify data preprocessing and model parameters until the result
achieves the desired properties.



Taxonomy
• A possible taxonomy of the clustering methods is the following:
• Hierarchical methods. These methods involve the construction of a clustering

tree. The set of patterns is separated into the two most unrelated subsets,
and subsets are recursively separated into smaller subsets.
• Non-hierarchical methods. These methods sequentially assign each pattern

to one cluster. They can be either parametric or non-parametric.
• Parametric approaches are based on known class-conditioned distributions and involve

distribution parameter estimation.
• Non-parametric methods are simpler and practically useful.



𝐾-means
• Among non-hierarchical non-parametric methods there is the
𝐾-means algorithm, which is an elementary but very popular method.
• The input of the algorithm is an 𝑁 𝑛-dimensional data points. We

assume that the number of clusters 𝐾 is known.
• We initialize the location of cluster exemplars using random values or

exploiting known data structure if available. We iteratively assign data
points to their closest exemplar, and then we recalculate the
exemplars as the centroid of their associated data points. When the
exemplars’ position stabilize the algorithm terminates.



𝐾-means
𝑲-means cluster analysis.

1. Define the number of clusters 𝐾 to be sought in a set X = {𝒙), 𝒙+, … , 𝒙-}, with 𝒙), 𝒙+, … , 𝒙- ∈ ℝ1.

2. Initialize 𝐾 cluster exemplars 𝝁), 𝝁+, … , 𝝁3 ∈ ℝ1. This may be random, or from 𝐾 data points, or from

other prior knowledge.

3. Allocate data points to the closest 𝝁4 using some distance metric 𝑑 (Euclidean distance is a common

choice).

4. Recompute the 𝝁4 as centroids of their associated data,𝑀4

𝑀4 = 𝒙7 ∶ 𝑑 𝒙7, 𝝁4 = min< 𝑑 𝒙7, 𝝁<

5. If the 𝝁4 have not stabilized, go to 3.

6.



𝐾-means



𝐾-means



𝐾-means in MATLAB
• idx = kmeans(X,k) performs 𝑘-means clustering to partition

the observations of the 𝑛-by-𝑝 data matrix X into k clusters, and
returns an 𝑛-by-1 vector (idx) containing cluster indices of each
observation. Rows of X correspond to points and columns correspond
to variables.

• By default, kmeans uses the squared Euclidean distance metric and
the 𝑘-means++ algorithm for cluster center initialization.



𝐾-means in MATLAB



𝐾-means in MATLAB



Self-Organizing Maps
• A self-organizing map (SOM) or self-organizing feature map (SOFM) is

a type of artificial neural network (ANN) that is trained using
unsupervised learning to produce a low-dimensional (typically two-
dimensional), discretized representation of the input space of the
training samples, called a map, and is therefore a method to do
dimensionality reduction.
• Self-organizing maps differ from other artificial neural networks as

they apply competitive learning as opposed to error-correction
learning (such as backpropagation with gradient descent), and in the
sense that they use a neighborhood function to preserve the
topological properties of the input space.



Self-Organizing Maps
• This makes SOMs useful for visualization by creating low-dimensional

views of high-dimensional data, akin to multidimensional scaling. The
artificial neural network introduced by the Finnish professor Teuvo
Kohonen in the 1980s is sometimes called a Kohonen map or
network.
• The Kohonen net is a computationally convenient abstraction building

on biological models of neural systems from the 1970s and
morphogenesis models dating back to Alan Turing in the 1950s.



Self-Organizing Maps
• Like most artificial neural networks, SOMs operate in two modes:

training and mapping. "Training" builds the map using input examples
(a competitive process, also called vector quantization), while
"mapping" automatically classifies a new input vector.
• The visible part of a self-organizing map is the map space, which

consists of components called nodes or neurons. The map space is
defined beforehand, usually as a finite two-dimensional region where
nodes are arranged in a regular hexagonal or rectangular grid.



Self-Organizing Maps
• Each node is associated with a "weight" vector, which is a position in

the input space; that is, it has the same dimension as each input
vector. While nodes in the map space stay fixed, training consists in
moving weight vectors toward the input data (reducing a distance
metric) without spoiling the topology induced from the map space.
• Thus, the self-organizing map describes a mapping from a higher-

dimensional input space to a lower-dimensional map space. Once
trained, the map can classify a vector from the input space by finding
the node with the closest (smallest distance metric) weight vector to
the input space vector.



Self-Organizing Maps in MATLAB
dimensions = [10];

% Creazione rete

net = selforgmap(dimensions);



Self-Organizing Maps in MATLAB

figure,plotsompos(net,x);



Self-Organizing Maps in MATLAB

• Hits

figure,plotsomhits(net,x);

• SOM Neighbor Weight Distances

figure,plotsomnd(net,x);



Hierarchical Clustering
• Hierarchical clustering (also called hierarchical cluster analysis or
HCA) is a method of cluster analysis which seeks to build a hierarchy
of clusters. Strategies for hierarchical clustering generally fall into two
types:
• Agglomerative: This is a "bottom-up" approach: each observation starts in its

own cluster, and pairs of clusters are merged as one moves up the hierarchy.
• Divisive: This is a "top-down" approach: all observations start in one cluster,

and splits are performed recursively as one moves down the hierarchy.

• In general, the merges and splits are determined in a greedy manner.
The results of hierarchical clustering are usually presented in a
dendrogram.



Cluster dissimilarity
• In order to decide which clusters should be combined (for agglomerative),

or where a cluster should be split (for divisive), a measure of dissimilarity
between sets of observations is required.
• In most methods of hierarchical clustering, this is achieved by use of an

appropriate metric (a measure of distance between pairs of observations),
and a linkage criterion which specifies the dissimilarity of sets as a function
of the pairwise distances of observations in the sets.
• The choice of an appropriate metric will influence the shape of the

clusters, as some elements may be close to one another according to one
distance and farther away according to another.
• The linkage criterion determines the distance between sets of

observations as a function of the pairwise distances between observations.



Metrics



Linkage criteria



Hierarchical Clustering in MATLAB
• Z = linkage(X) returns a matrix Z that encodes a tree containing

hierarchical clusters of the rows of the input data matrix X.

• Z = linkage(X,method) creates the tree using the specified method,
which describes how to measure the distance between clusters.

• Z = linkage(X,method,metric) performs clustering by passing metric
to the pdist function, which computes the distance between the rows of X.



Dendrogram
• A dendrogram is a diagram representing a tree. This diagrammatic

representation is frequently used in different contexts:
• in hierarchical clustering, it illustrates the arrangement of the clusters

produced by the corresponding analyses.
• in computational biology, it shows the clustering of genes or samples,

sometimes in the margins of heatmaps.
• in phylogenetics, it displays the evolutionary relationships among various

biological taxa. In this case, the dendrogram is also called a phylogenetic tree.



Dendrogram in MATLAB
tree = linkage(X,'average','euclidean'); % Hierarchical Clustering

figure,dendrogram(tree) % Dendrogram plot
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