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Linear Regression
• Linear regression models the relation between a dependent, or response,

variable 𝑦 and one or more independent, or predictor, variables 𝑥#, … , 𝑥&.
𝑦 = 𝜃) + 𝜃#𝑥# + ⋯+ 𝜃&𝑥& + 𝜖

• Simple linear regression considers only one independent variable using the
relation:

𝑦 = 𝜃) + 𝜃#𝑥 + 𝜖

• 𝜃) is the intercept

• 𝜃# is the slope

• 𝜖 is the error term



Matricial form
• Consider a set of 𝑚 observed values of 𝑥 and 𝑦 given by 𝑥(#), 𝑦(#) , 𝑥(0), 𝑦(0) , … , (𝑥(&), 𝑦(&)). Using the

simple linear regression relation, these values form a system of linear equations. Represent these equations

in matrix form as:
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We can write the matricial relation as:
𝑌 = 𝑋𝜃

Where 𝑌 is 𝑚×1, 𝑋 is 𝑚×2, 𝜃 is 2×1



Matricial form
• If we have 𝑛 variables, with 𝑚 observations for each, we can write:
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We can write the matricial relation as:
𝑌 = 𝑋𝜃

Where 𝑌 is 𝑚×1, 𝑋 is 𝑚×(𝑛 + 1), 𝜃 is 𝑛×1.



Example
• In this example we will use the accident dataset, which is

embedded in your MATLAB environment.

%% Dataset loading
load accidents
x = hwydata(:,14); %Population of states
y = hwydata(:,4); %Accidents per state
format long

%% Linear Regression -- no intercept
theta1 = x\y;

%% Linear Regression – with intercept
X = [ones(length(x),1) x];
theta = X\y;

We add a column 
of all ones to x!



Correlation Coefficient
• Pearson's correlation coefficient is the covariance of the two

variables divided by the product of their standard deviations. The
form of the definition involves a "product moment", that is, the mean
(the first moment about the origin) of the product of the mean-
adjusted random variables.
• For a population:

𝜌:,; =
𝑐𝑜𝑣(𝑋, 𝑌)
𝜎:𝜎;

=
𝐸[ 𝑋 − 𝜇: 𝑌 − 𝜇; ]

𝜎:𝜎;
• For a sample:
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Correlation Coefficient
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Correlation Coefficient

• A correlation coefficient of 𝑟 = +1
means a perfect positive linear
relationship between the two
variables.
• A correlation coefficient of 𝑟 = −1

means a perfect negative linear
relationship between the two
variables.
• A correlation coefficient of 𝑟 = 0

suggests that there is no linear
relationship between the two
variables.



Correlation Coefficient



Coefficient of determination
• In statistics, the coefficient of determination, denoted 𝑅0 (𝑅

squared), is the proportion of the variance in the dependent variable
that is predictable from the independent variable(s).
• It is a statistic used in the context of statistical models whose main

purpose is either the prediction of future outcomes or the testing of
hypotheses, on the basis of other related information.
• It provides a measure of how well observed outcomes are replicated

by the model, based on the proportion of total variation of outcomes
explained by the model.



𝑅0

From the figure, the two fits
look similar. One method to
find the better fit is to
calculate the coefficient of
determination, 𝑅0.
• 𝑅0 is one measure of how

well a model can predict the
data, and falls between 0
and 1.
• The higher the value of 𝑅0,

the better the model is at
predicting the data.



𝑅0
• 𝑦(I) are the sampled values, 𝑦∗(I) are the calculated values, 𝑦 is the mean of 𝑦
• Total sum of squares (proportional to variance of data):

N
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0

• Sum of squares of residuals:

N
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0
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• Then 𝑅0 is the sum of squared residuals over the total sum of squares:

𝑅0 = 1 −
∑IJ#& 𝑦(I) − 𝑦∗(I)

0

∑IJ#& 𝑦(I) − 𝑦 0

function Rsq = calcRsq(y, yCalc)
Rsq = 1 - sum((y - yCalc).^2)/sum((y - mean(y)).^2);

end



Polynomial curve fitting
• Polynomial regression is a form of regression analysis in which the

relationship between the independent variable 𝑥 and the dependent
variable 𝑦 is modelled as an 𝑛th degree polynomial in 𝑥. Polynomial
regression fits a nonlinear relationship between the value of 𝑥 and
the corresponding conditional mean of 𝑦, denoted 𝐸 𝑦 𝑥).
• p = polyfit(x,y,n) returns the coefficients for a polynomial
𝑝(𝑥) of degree 𝑛 that is a best fit (in a least-squares sense) for the
data in 𝑦. The coefficients in 𝑝 are in descending powers, and the
length of 𝑝 is 𝑛 + 1.

𝑝 𝑥 = 𝑝#𝑥& + 𝑝0𝑥&X# + ⋯+ 𝑝&𝑥 + 𝑝&Y#



Polynomial evaluation
• y = polyval(p,x) evaluates the polynomial 𝑝 at each point in 𝑥. 

The argument 𝑝 is a vector of length 𝑛 + 1 whose elements are the 
coefficients (in descending powers) of an 𝑛th-degree polynomial:

𝑝 𝑥 = 𝑝#𝑥& + 𝑝0𝑥&X# + ⋯+ 𝑝&𝑥 + 𝑝&Y#

p = [3 2 1];
x = [5 7 9];
y = polyval(p,x)
y = 1×3

86   162   262

𝑝 𝑥 = 3𝑥0 + 2𝑥 + 1
𝑝 5 = 86
𝑝 7 = 162
𝑝 9 = 262



Example - data



Example - fit



Overfitting and underfitting
• Overfitting is "the production of an analysis that corresponds too

closely or exactly to a particular set of data, and may therefore fail to
fit additional data or predict future observations reliably". An
overfitted model is a statistical model that contains more parameters
than can be justified by the data. The essence of overfitting is to have
unknowingly extracted some of the residual variation (i.e. the noise)
as if that variation represented underlying model structure.
• Underfitting occurs when a statistical model cannot adequately

capture the underlying structure of the data. An underfitted model is
a model where some parameters or terms that would appear in a
correctly specified model are missing. Underfitting would occur, for
example, when fitting a linear model to non-linear data. Such a model
will tend to have poor predictive performance.



Underfitting
p = polyfit(x,y,1);



Underfitting
p = polyfit(x,y,1);



Fitting
p = polyfit(x,y,2);



Fitting
p = polyfit(x,y,3);



Overfitting
p = polyfit(x,y,25);



Overfitting
p = polyfit(x,y,25);
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