Bioinformatica Avanzata

Solving Numerical Optimization Problems with Genetic Algorithms (MATLAB and C)

Optimization problem

- Optimization problem: find X^{*} so as to optimize $f\left(X^{*}\right)$
- $X^{*}=\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}\right) \in \mathbb{R}^{n}$
- $X^{*} \in F \subseteq S$
- $S \subseteq \mathbb{R}^{n}$ is the search space
- $l(i) \leq x_{i} \leq u(i), \quad 1 \leq i \leq n$
- $F \subseteq S$ is the feasible search space, with $m \geq 0$ constraints:
- $g_{j}\left(X^{*}\right) \leq 0, \quad$ for $j=1, \ldots, q$
- $h_{j}\left(X^{*}\right)=0, \quad$ for $j=q+1, \ldots, m$
- Type of constraints:
- LE: Linear Equations
- LI: Linear Inequalities
- NE: Nonlinear Equations
- NI: Nonlinear Inequalities

MATLAB Global Optimization Toolbox

Global Optimization Toolbox provides functions that search for global solutions to problems that contain multiple maxima or minima.

- Direct Search
- Pattern search solver for derivative-free optimization, constrained or unconstrained
- Genetic Algorithm
- Genetic algorithm solver for mixed-integer or continuous-variable optimization, constrained or unconstrained
- Particle Swarm
- Particle swarm solver for derivative-free unconstrained optimization or optimization with bounds
- Surrogate Optimization
- Surrogate optimization solver for expensive objective functions, with bounds and optional integer constraints
- Simulated Annealing
- Simulated annealing solver for derivative-free unconstrained optimization or optimization with bounds
- Multiobjective Optimization
- Pareto sets via genetic or pattern search algorithms, with or without constraints

Genetic Algorithms in MATLAB

- Function: ga()
- Parameters:
- fun
- The $f(X)$ to optimize
- nvars
- $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$
- A, b
- Linear inequalities, in matricial form
- Aeq, beq
- Linear equalities, in matricial form
- lb, ub
- Lower and upper bounds
- nonlcon
- Nonlinear equalities and inequalities
- IntCon
- Integer constraints
- options
- Hyperparameters of the algorithm

The fitness function

- fun - Objective function
- Objective function, specified as a function handle or function name. Write the objective function to accept a row vector of length nvars and return a scalar value.
- MATLAB attempts to find X^{*} as to minimize $f\left(X^{*}\right)$
- Exercise 1: implement a MATLAB function which realizes $f(X)$:

$$
f(X)=f\left(x_{1}, x_{2}\right)=\left\{\begin{array}{cl}
\left(x_{1}+5\right)^{2}+\left|x_{2}\right| & \text { if } x_{1} \leq-5 \\
-2 \sin \left(x_{1}\right)+\left|x_{2}\right| & \text { if }-5 \leq x_{1} \leq-3 \\
\frac{1}{2} x_{1}+2+\left|x_{2}\right| & \text { if }-3 \leq x_{1} \leq 0 \\
\frac{3}{10} \sqrt{x_{1}}+\frac{5}{2}+\left|x_{2}\right| & \text { if } x_{1}>0
\end{array}\right.
$$

The fitness function

- Exercise 1 solution:

```
function \(f=p s\) example( \(x\) )
for \(i=1: s i z e(x, 1)\)
    if \(x(i, 1)<-5\)
        \(f(i)=(x(i, 1)+5)^{\wedge} 2+\operatorname{abs}(x(i, 2)) ;\)
    elseif x(i,1) < -3
        f(i) \(=-2 * \sin (x(i, 1))+a b s(x(i, 2)) ;\)
    elseif \(x(i, 1)<0\)
        \(\mathrm{f}(\mathrm{i})=0.5^{*} \mathrm{x}(\mathrm{i}, 1)+2+\mathrm{abs}(\mathrm{x}(\mathrm{i}, 2))\);
    elseif \(x(i, 1)>=0\)
        \(\mathrm{f}(\mathrm{i})=.3^{*} \operatorname{sqrt}(x(i, 1))+5 / 2+\operatorname{abs}(x(i, 2))\);
    end
```

end
ps_example(x)

Optimization

- $\mathrm{x}=\mathrm{ga}(@ \mathrm{ps}$ _example, 2)
- @ps_example is the handle of the fitness function
- 2 is the number of variables in the fitness function
- x is the optimum point found by genetic algorithms
- ps_example (x) is the value of the fitness function in the optimum
- Exercise 2: use your MATLAB to find x and $p s$ example (x). Then make a 3D plot of the optimum point.

つ三
apulian

Optimum point

Exercise 2 solution:

$x=[-4.6793,-0.0860]$
$f(x)=-1.9129$

Minimum
found by GA

in is

Linear inequalities

- Linear inequalities:

$$
\left\{\begin{array}{l}
-x_{1}-x_{2} \leq-1 \\
-x_{1}+x_{2} \leq 5
\end{array}\right.
$$

- MATLAB matricial form:

$$
\begin{aligned}
& \mathrm{A}= {\left[\begin{array}{cc}
-1, & -1 ; \\
-1, & 1
\end{array}\right] } \\
& \mathrm{b}= {[-1 ;} \\
& {\left[\begin{array}{l}
-1 ;
\end{array}\right] }
\end{aligned}
$$

- Optimization:
- $x=$ ga(@ps_example, 2, A, b)

Optimum with LI

Minimum
found by GA
with LI

$x=[0.9992,-0.0000]$
$f(x)=2.7999$

IN ${ }^{2} 3$

Linear equalities

- Linear equalities and inequalities:

$$
\left\{\begin{array}{l}
-x_{1}-x_{2} \leq-1 \\
-x_{1}+x_{2}=5
\end{array}\right.
$$

- MATLAB matricial form:

$$
\begin{aligned}
& \mathrm{A}=\left[\begin{array}{ll}
-1 & -1
\end{array}\right] \\
& \mathrm{b}=-1 \\
& \text { Aeq }=\left[\begin{array}{ll}
-1 & 1
\end{array}\right] \\
& \mathrm{beq}=5
\end{aligned}
$$

- Optimization:
- $x=$ ga(@ps_example, 2, A, b, Aeq, beq)

Optimum with LI and LE

Minimum found by GA with LI and LE
$x=[-2.0000,2.9990]$
$f(x)=3.9990$

in ${ }^{2}{ }^{3}$

LI and LE

- Exercise 3: implement in MATLAB the following conditions:

$$
\left\{\begin{array}{c}
-2 x_{1} \leq-1+4 x_{2} \\
+x_{2}=5-2 x_{1} \\
x_{2} \geq 2+3 x_{1} \\
x_{1}+x_{2} \geq 0
\end{array}\right.
$$

$$
\begin{aligned}
& \mathrm{A}=? \\
& \mathrm{~b}=? \\
& \text { Aeq }=? \\
& \mathrm{beq}=?
\end{aligned}
$$

LI and LE

- Exercise 3 solution:
- Remember to put
- Ll in the form $A x \leq b$
- LE in the form $A_{e q} x=b_{e q}$

$$
\left\{\begin{array}{c}
-2 x_{1}-4 x_{2} \leq-1 \\
+3 x_{1}-x_{2} \leq-2 \\
-x_{1}-x_{2} \leq 0 \\
2 x_{1}+x_{2}=5
\end{array}\right.
$$

```
A = [-2 -4;
    -1 -1]
b = [-1; -2; 0]
Aeq = [2 1]
beq = [5]
```


LI and LE

Exercise 3 solution:

Minimum found by GA with LI and LE
$x=[0.6000,3.7990]$
$f(x)=6.5314$

(Nas

Lower and upper bounds

- Lower and upper bounds:

$$
\left\{\begin{array}{r}
1 \leq-x_{1} \leq 6 \\
-3 \leq x_{2} \leq 8
\end{array}\right.
$$

- MATLAB form:
l.b $=\left[\begin{array}{ll}1 & -3\end{array}\right]$
ub $=\left[\begin{array}{ll}6 & 8\end{array}\right]$
- Optimization:
- $\mathrm{x}=\mathrm{ga}\left(@ p s _\right.$example, 2, A, b, Aeq, beq, lb, ub)

Optimization with LI, LE and bounds

Minimum
found by GA with LI, LE and bounds
$x=[1.0000,5.9991]$
$\mathrm{f}(\mathrm{x})=8.7991$

Nonlinear constraints

- Nonlinear constraints:

$$
\left\{\begin{array}{c}
2 x_{1}^{2}+x_{2}^{2} \leq 3 \\
\left(x_{1}+1\right)^{2}=\left(\frac{x_{2}}{2}\right)^{4}
\end{array}\right.
$$

- Define a function

```
function [c, ceq] = ellipsecons(x)
c = 2*x(1)^2 + x(2)^2 - 3;
ceq = (x(1)+1)^2 - (x(2)/2)^4;
end
```

- Optimization

```
- \(x=\) ga(@ps_example,2, [], [], [], [], [], [], @ellipsecons)
```

つ三I

Optimization with NI, NE

Minimum
found by GA
with NI, NE
$x=[-0.9766,0.0362]$
$f(x)=1.5479$

(Ney

NI, NE

- Exercise 4: implement in MATLAB a function with 2 nonlinear equalities and 2 nonlinear inequalities

$$
\left\{\begin{array}{l}
g_{1}\left(X^{*}\right) \leq 0 \\
g_{2}\left(X^{*}\right) \leq 0 \\
h_{1}\left(X^{*}\right)=0 \\
h_{2}\left(X^{*}\right)=0
\end{array}\right.
$$

```
function [c, ceq] = myConstraints(x)
c = ?
ceq = ?
end
```


Exercise 5

- Exercise 5: solve the following optimization problem:
- Minimize the squared norm of a point in \mathbb{R}^{2}, with the constraints that:
- The point must be inside the rectangle with vertices $(2,2),(2,8),(7,2),(7,8)$
- The point must belong to the circonference with center in $(8,6)$ and radius 3

Exercise 5

- Exercise 5: solve the following optimization problem:
- Minimize the squared norm of a point in \mathbb{R}^{2}, with the constraints that:
- The point must be inside the rectangle with vertices $(2,2),(2,8),(7,2),(7,8)$
- The point must belong to the circonference with center in $(8,6)$ and radius 3

$$
\begin{gathered}
\min f(X)=\min f\left(x_{1}, x_{2}\right)=\min x_{1}^{2}+x_{2}^{2} \\
\left\{\begin{array}{c}
2 \leq x_{1} \leq 7 \\
2 \leq x_{2} \leq 8 \\
\left(x_{1}-8\right)^{2}+\left(x_{2}-6\right)^{2}=3^{2}
\end{array}\right.
\end{gathered}
$$

Exercise 5 - MATLAB solution

- The fitness function is the squared norm:

```
function f = squarednorm(x)
f = x(1)^^2 + x(2)^2;
end
```

- The following is a nonlinear equality constraint (NE):

$$
\left(x_{1}-8\right)^{2}+\left(x_{2}-6\right)^{2}=3^{2}
$$

```
function [c,ceq] = circlecons(x)
```

$\mathrm{c}=$ [];
ceq $=(x(1)-8)^{\wedge} 2+(x(2)-6)^{\wedge} 2-9 ;$
end

- Note that we do not have a NI constraint, so c must be empty.
- We have lower and upper bounds:

$$
\left.\begin{array}{l}
\mathrm{lb}=[2, \\
\mathrm{ub}=[7,
\end{array}\right]
$$

Exercise 5 - MATLAB solution

- Optimization

```
[x,fval] = ga(@squarednorm,2,[],[],[],[],lb,ub,@circlecons);
x = [5.6789 4.0994]
fval = 49.0546
```


Exercise 5 - C solution

$$
\begin{gathered}
\min (f(X)+\text { penalty }(X))=\max \frac{1}{f(X)+\text { penalty }(X)}=\max f^{*}(X) \\
f(X)=x_{1}^{2}+x_{2}^{2} \\
\text { penalty }(X)=w\left(\left(x_{1}-8\right)^{2}+\left(x_{2}-6\right)^{2}-9\right)^{2} \\
f^{*}(X)=\frac{1}{x_{1}^{2}+x_{2}^{2}+w\left(\left(x_{1}-8\right)^{2}+\left(x_{2}-6\right)^{2}-9\right)^{2}}
\end{gathered}
$$

With this C implementation, you have to embody the constraints in the fitness function! But remember that, at the end, we are still interested in the value of the original fitness function!

つ三

Exercise 5 - C solution

$$
f^{*}(X)=\frac{1}{x_{1}^{2}+x_{2}^{2}+w\left(\left(x_{1}-8\right)^{2}+\left(x_{2}-6\right)^{2}-9\right)^{2}}
$$

$$
w=1000
$$

```
#define NVARS 2
```

void evaluate(void) \{
int mem;
for (mem $=0$; mem < POPSIZE; mem++) \{
valutation (mem);
population[mem].fitness $=1 /(\quad \mathrm{x}[0] * x[0]+x[1] * x[1]+1000 *(x[0]-$
$8) *(x[0]-8)+(x[1]-6) *(x[1]-6)-9) *((x[0]-8) *(x[0]-8)+(x[1]-6) *(x[1]-6)-9) \quad$;
\}
\}

Exercise 5 - C solution

After the optimization we get the following results.

$$
\max f^{*}(X)=\max \frac{1}{n^{2}+n^{2}} \quad w=1000
$$

$$
X=[5.5875,4.2170]
$$

$$
f(X)=f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}=49.0032
$$

$$
f^{*}(X)=0.020407
$$

Integer Constraints

- IntCon - Integer Variables
- Integer variables, specified as a vector of positive integers taking values from 1 to nvars. Each value in IntCon represents an x component that is integer-valued.
- Example: we want x_{1} to be constrained to be an integer-valued variable.
- Optimization

$$
\cdot x=g a(@ p s, e x a m p l e, 2,[],[],[],[],[],[],[], 1)
$$

つ三

Optimization with Integer Constraints

Minimum
found by GA with Integer Constraints
$x=[-5.0000,-0.0000]$
$f(x)=-1.9178$

bioengineering

Monitor solver progress

Algorithm hyperparameters tuning

- Some of the hyperparameters you can tune using MATLAB ga ():
-EliteCount
- Positive integer specifying how many individuals in the current generation are guaranteed to survive to the next generation.
- FitnessLimit
- If the fitness function attains the value of FitnessLimit, the algorithm halts.
- ConstraintTolerance
- Determines the feasibility with respect to constraints.
- MaxGenerations
- Maximum number of iterations before the algorithm halts.
- PopulationSize
- Size of the population.

DIPARTIMENTO DI
INGEGNERIA ELETTRICA
ine

Hyperparameters Tuning

- Exercise 6: try to tune options and see how it affects the optimization process.
bioengineering

Multiobjective Optimization Problem

- A multi-objective optimization problem is an optimization problem that involves multiple objective functions.

$$
\begin{gathered}
\min (f(X))=\min \left(f_{1}(X), f_{2}(X), \ldots, f_{k}(X)\right) \\
f(X)=\left(f_{1}(X), f_{2}(X), \ldots, f_{k}(X)\right) \in \mathbb{R}^{k} \\
X \in F \subseteq S \\
f(X) \in \mathbb{R}^{k}
\end{gathered}
$$

- In multi-objective optimization, there does not typically exist a feasible solution that minimizes all objective functions simultaneously.
- Therefore, attention is paid to Pareto optimal solutions; that is, solutions that cannot be improved in any of the objectives without degrading at least one of the other objectives.
$\square \begin{aligned} & \text { DIPARTIMENTO DI } \\ & \text { INGEGNERIA ELETTRICA } \\ & \text { E DELLINFORMAZIONE }\end{aligned}$

Multiobjective Optimization with GA in MATLAB

- Function: gamultiobj()
- Parameters:
- fun
- The $f(X)=\left(f_{1}(X), f_{2}(X), \ldots, f_{k}(X)\right) \in \mathbb{R}^{k}$ to optimize
- nvars
- $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$
- A, b
- Linear inequalities, in matricial form
- Aeq, beq
- Linear equalities, in matricial form
- lb, ub
- Lower and upper bounds
- nonlcon
- Nonlinear equalities and inequalities
- options
- Hyperparameters of the algorithm

Multiobjective function

- Define a vector-valued objective function:

$$
\begin{gathered}
f(X)=\left(f_{1}(X), f_{2}(X)\right) \in \mathbb{R}^{2} \\
f_{1}(X)=\|X\|^{2}=x_{1}^{2}+x_{2}^{2} \\
f_{2}(X)=\frac{1}{2}\left(\left(x_{1}-2\right)^{2}+\left(x_{2}+1\right)^{2}\right)+2
\end{gathered}
$$

- You can use a MATLAB lambda expression or use a dedicate file.

```
fitnessfcn = @(x)[norm(x)^2 , 0.5*norm(x(:)-[2;-1])^2+2];
```

つ三

Constrained optimization with MATLAB

- We want to impose the following linear inequality:

$$
x_{1}+x_{2} \leq \frac{1}{2}
$$

- As usual, we define A and b :

$$
\begin{aligned}
& \mathrm{A}=[1,1] \\
& \mathrm{b}=1 / 2
\end{aligned}
$$

- Optimization:

$$
[x, f v a l]=\text { gamultiobj(fitnessfcn, } 2, A, b) ;
$$

Pareto Points in Parameter Space

Bound constraints

Optimize:

$$
f(x)=\left(f_{1}(x), f_{2}(x)\right)=(\sin (x), \cos (x))
$$

With the constraint:

$$
0 \leq x \leq 2 \pi
$$

In MATLAB:

```
fitnessfcn = @(x)[sin(x),cos(x)];
nvars = 1;
lb = 0;
ub = 2*pi;
[x, fval] = gamultiobj(fitnessfcn,nvars,[],[],[],[],lb,ub);
```


Pareto Front

Noc

References

- MATLAB Documentation
- Global Optimization Toolbox. URL: https://it.mathworks.com/help/gads/
- Genetic Algorithm for Mono-objective Optimization. URL: https://it.mathworks.com/help/gads/ga.html
- Genetic Algorithm for Multi-objective Optimization. URL: https://it.mathworks.com/help/gads/gamultiobj.html
- Zbigniew Michalewicz and Girish Nazhiyath, "Genocop III: A Coevolutionary Algorithm for Numerical Optimization Problems with Nonlinear Constraints".
URL: https://cs.adelaide.edu.au/~zbyszek/Papers/p24.pdf
- Deb, Kalyanmoy. "Multi-Objective Optimization Using Evolutionary Algorithms". Chichester, England: John Wiley \& Sons, 2001.

つ三

