

Politecnico di Bari

Dipartimento di Ingegneria Elettrica e dell'Informazione

Corso di Laurea Magistrale in Ingegneria dei Sistemi Medicali

Bioinformatica Avanzata

Solving Numerical Optimization Problems with Genetic Algorithms (MATLAB and C)

Dr. Nicola **Altini**, Ph.D. Student

Prof. Eng. Vitoantonio **Bevilacqua**, Ph.D.

Anno Accademico 2019/2020

Optimization problem

- Optimization problem: find X^* so as to optimize $f(X^*)$
- $X^* = (x_1^*, x_2^*, ..., x_n^*) \in \mathbb{R}^n$
- $X^* \in F \subseteq S$
- $S \subseteq \mathbb{R}^n$ is the search space
 - $l(i) \le x_i \le u(i)$, $1 \le i \le n$
- $F \subseteq S$ is the feasible search space, with $m \ge 0$ constraints:

•
$$g_j(X^*) \le 0$$
, for $j = 1, ..., q$

•
$$h_j(X^*) = 0$$
, for $j = q + 1, ..., m$

- Type of constraints:
 - LE: Linear Equations
 - LI: Linear Inequalities
 - NE: Nonlinear Equations
 - NI: Nonlinear Inequalities

MATLAB Global Optimization Toolbox

Global Optimization Toolbox provides functions that search for global solutions to problems that contain multiple maxima or minima.

- Direct Search
 - Pattern search solver for derivative-free optimization, constrained or unconstrained
- Genetic Algorithm
 - Genetic algorithm solver for mixed-integer or continuous-variable optimization, constrained or unconstrained
- Particle Swarm
 - Particle swarm solver for derivative-free unconstrained optimization or optimization with bounds
- Surrogate Optimization
 - Surrogate optimization solver for expensive objective functions, with bounds and optional integer constraints
- Simulated Annealing
 - Simulated annealing solver for derivative-free unconstrained optimization or optimization with bounds
- Multiobjective Optimization
 - Pareto sets via genetic or pattern search algorithms, with or without constraints

Genetic Algorithms in MATLAB

- Function: ga()
- Parameters:
 - fun
 - The f(X) to optimize
 - nvars
 - $X = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$
 - A, b
 - Linear inequalities, in matricial form
 - Aeq, beq
 - Linear equalities, in matricial form
 - lb, ub
 - Lower and upper bounds
 - nonlcon
 - Nonlinear equalities and inequalities
 - IntCon
 - Integer constraints
 - options
 - Hyperparameters of the algorithm

The fitness function

- fun Objective function
- Objective function, specified as a function handle or function name. Write the objective function to accept a row vector of length nvars and return a scalar value.
- MATLAB attempts to find X^* as to minimize $f(X^*)$
- **Exercise 1**: implement a MATLAB function which realizes f(X):

$$f(X) = f(x_1, x_2) = \begin{cases} (x_1 + 5)^2 + |x_2| & \text{if } x_1 \le -5 \\ -2\sin(x_1) + |x_2| & \text{if } -5 \le x_1 \le -3 \\ \frac{1}{2}x_1 + 2 + |x_2| & \text{if } -3 \le x_1 \le 0 \\ \frac{3}{10}\sqrt{x_1} + \frac{5}{2} + |x_2| & \text{if } x_1 > 0 \end{cases}$$

The fitness function

• Exercise 1 solution:

```
function f = ps example(x)
for i = 1:size(x, 1)
    if x(i, 1) < -5
        f(i) = (x(i,1)+5)^2 + abs(x(i,2));
    elseif x(i, 1) < -3
        f(i) = -2*sin(x(i,1)) + abs(x(i,2));
    elseif x(i, 1) < 0
        f(i) = 0.5 \times (i, 1) + 2 + abs(x(i, 2));
    elseif x(i, 1) >= 0
        f(i) = .3*sqrt(x(i,1)) + 5/2 + abs(x(i,2));
    end
```

end

ps_example(x)

Optimization

- x = ga(@ps_example,2)
 - <code>@ps_example</code> is the handle of the fitness function
 - 2 is the number of variables in the fitness function
- x is the optimum point found by genetic algorithms
- $ps_example(x)$ is the value of the fitness function in the optimum
- Exercise 2: use your MATLAB to find x and $ps_example(x)$. Then make a 3D plot of the optimum point.

Optimum point

Linear inequalities

• Linear inequalities:

$$\begin{cases} -x_1 - x_2 \le -1 \\ -x_1 + x_2 \le 5 \end{cases}$$

- MATLAB matricial form:
 - $A = [-1, -1; \\ -1, 1] \\ b = [-1; 5]$
- Optimization:

•
$$x = ga(@ps_example, 2, A, b)$$

Optimum with LI

Linear equalities

• Linear equalities and inequalities:

$$\begin{cases} -x_1 - x_2 \le -1 \\ -x_1 + x_2 = 5 \end{cases}$$

- MATLAB matricial form:
 - A = [-1 -1] b = -1 Aeq = [-1 1]beq = 5
- Optimization:

Optimum with LI and LE

LI and LE

• Exercise 3: implement in MATLAB the following conditions:

$$\begin{cases} -2x_1 \le -1 + 4x_2 \\ +x_2 = 5 - 2x_1 \\ x_2 \ge 2 + 3x_1 \\ x_1 + x_2 \ge 0 \end{cases}$$

$$Aeq = ?$$

$$beq = ?$$

LI and LE

- Exercise 3 solution:
- Remember to put
 - LI in the form $Ax \leq b$
 - LE in the form $A_{eq}x = b_{eq}$

$$\begin{cases} -2x_1 - 4x_2 \le -1 \\ +3x_1 - x_2 \le -2 \\ -x_1 - x_2 \le 0 \\ 2x_1 + x_2 = 5 \end{cases}$$

LI and LE

Lower and upper bounds

• Lower and upper bounds:

$$\begin{cases} 1 \le -x_1 \le 6\\ -3 \le x_2 \le 8 \end{cases}$$

- MATLAB form:
 - lb = [1 -3]ub = [6 8]
- Optimization:
 - x = ga(@ps_example, 2, A, b, Aeq, beq, lb, ub)

Optimization with LI, LE and bounds

Nonlinear constraints

• Nonlinear constraints:

$$2x_1^2 + x_2^2 \le 3$$
$$(x_1 + 1)^2 = \left(\frac{x_2}{2}\right)^4$$

Define a function

- Optimization
 - x = ga(@ps_example,2,[],[],[],[],[],[],[],@ellipsecons)

Optimization with NI, NE

NI, NE

• Exercise 4: implement in MATLAB a function with 2 nonlinear equalities and 2 nonlinear inequalities

$$\begin{cases} g_1(X^*) \le 0\\ g_2(X^*) \le 0\\ h_1(X^*) = 0\\ h_2(X^*) = 0 \end{cases}$$

Exercise 5

- Exercise 5: solve the following optimization problem:
- Minimize the squared norm of a point in \mathbb{R}^2 , with the constraints that:
 - The point must be inside the rectangle with vertices (2,2), (2,8), (7,2), (7,8)
 - The point must belong to the circonference with center in (8,6) and radius 3

Exercise 5

- Exercise 5: solve the following optimization problem:
- Minimize the squared norm of a point in \mathbb{R}^2 , with the constraints that:
 - The point must be inside the rectangle with vertices (2,2), (2,8), (7,2), (7,8)
 - The point must belong to the circonference with center in (8,6) and radius 3

$$\min f(X) = \min f(x_1, x_2) = \min x_1^2 + x_2^2$$

$$\begin{cases} 2 \le x_1 \le 7\\ 2 \le x_2 \le 8\\ (x_1 - 8)^2 + (x_2 - 6)^2 = 3^2 \end{cases}$$

Exercise 5 - MATLAB solution

- The fitness function is the squared norm: function f = squarednorm(x) f = x(1)^2 + x(2)^2; end
- The following is a nonlinear equality constraint (NE):

$$(x_1 - 8)^2 + (x_2 - 6)^2 = 3^2$$

- Note that we do not have a NI constraint, so ${\rm c}$ must be empty.
- We have lower and upper bounds:

lb = [2, 2]ub = [7, 8]

Exercise 5 - MATLAB solution

• Optimization

[x,fval] = ga(@squarednorm,2,[],[],[],[],lb,ub,@circlecons);

x = [5.6789 4.0994]fval = 49.0546

Exercise 5 – C solution

$$\min(f(X) + penalty(X)) = \max \frac{1}{f(X) + penalty(X)} = \max f^*(X)$$
$$f(X) = x_1^2 + x_2^2$$
$$penalty(X) = w((x_1 - 8)^2 + (x_2 - 6)^2 - 9)^2$$
$$f^*(X) = \frac{1}{x_1^2 + x_2^2 + w((x_1 - 8)^2 + (x_2 - 6)^2 - 9)^2}$$

With this C implementation, you have to embody the constraints in the fitness function! But remember that, at the end, we are still interested in the value of the original fitness function!

Exercise 5 – C solution

$$f^*(X) = \frac{1}{x_1^2 + x_2^2 + w((x_1 - 8)^2 + (x_2 - 6)^2 - 9)^2}$$

4

w = 1000

Exercise 5 – C solution

After the optimization we get the following results.

$$\max f^*(X) = \max \frac{1}{x_1^2 + x_2^2 + w((x_1 - 8)^2 + (x_2 - 6)^2 - 9)^2} \qquad w = 1000$$

X = [5.5875, 4.2170]

$$f(X) = f(x_1, x_2) = x_1^2 + x_2^2 = 49.0032$$

 $f^*(X) = 0.020407$

Integer Constraints

- IntCon Integer Variables
- Integer variables, specified as a vector of positive integers taking values from 1 to nvars. Each value in IntCon represents an x component that is integer-valued.
- Example: we want x_1 to be constrained to be an integer-valued variable.
- Optimization
 - x = ga(@ps_example,2,[],[],[],[],[],[],[],[],1)

Optimization with Integer Constraints

Monitor solver progress

Algorithm hyperparameters tuning

- <u>Some</u> of the hyperparameters you can tune using MATLAB ga():
 - EliteCount
 - Positive integer specifying how many individuals in the current generation are guaranteed to survive to the next generation.
 - FitnessLimit
 - If the fitness function attains the value of FitnessLimit, the algorithm halts.
 - ConstraintTolerance
 - Determines the feasibility with respect to constraints.
 - MaxGenerations
 - Maximum number of iterations before the algorithm halts.
 - PopulationSize
 - Size of the population.

Hyperparameters Tuning

• Exercise 6: try to tune options and see how it affects the optimization process.

Multiobjective Optimization Problem

• A multi-objective optimization problem is an optimization problem that involves multiple objective functions.

> $\min(f(X)) = \min(f_1(X), f_2(X), \dots, f_k(X))$ $f(X) = (f_1(X), f_2(X), \dots, f_k(X)) \in \mathbb{R}^k$ $X \in F \subseteq S$ $f(X) \in \mathbb{R}^k$

- In multi-objective optimization, there does not typically exist a feasible solution that minimizes all objective functions simultaneously.
- Therefore, attention is paid to Pareto optimal solutions; that is, solutions that cannot be improved in any of the objectives without degrading at least one of the other objectives.

Multiobjective Optimization with GA in MATLAB

- Function: gamultiobj()
- Parameters:
 - fun
 - The $f(X) = (f_1(X), f_2(X), \dots, f_k(X)) \in \mathbb{R}^k$ to optimize
 - nvars
 - $X = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$
 - A, b
 - Linear inequalities, in matricial form
 - Aeq, beq
 - Linear equalities, in matricial form
 - lb, ub
 - Lower and upper bounds
 - nonlcon
 - Nonlinear equalities and inequalities
 - options
 - Hyperparameters of the algorithm

Multiobjective function

• Define a vector-valued objective function:

$$f(X) = (f_1(X), f_2(X)) \in \mathbb{R}^2$$
$$f_1(X) = ||X||^2 = x_1^2 + x_2^2$$
$$f_2(X) = \frac{1}{2}((x_1 - 2)^2 + (x_2 + 1)^2) + 2$$

• You can use a MATLAB lambda expression or use a dedicate file.

fitnessfcn = $@(x) [norm(x)^2, 0.5*norm(x(:)-[2;-1])^2+2];$

Constrained optimization with MATLAB

• We want to impose the following linear inequality:

$$x_1 + x_2 \le \frac{1}{2}$$

• As usual, we define A and b:

$$A = [1, 1]$$

$$b = 1/2$$

• Optimization:

[x, fval] = gamultiobj(fitnessfcn,2,A,b);

Pareto Points in Parameter Space

Bound constraints

Optimize:

$$f(x) = (f_1(x), f_2(x)) = (\sin(x), \cos(x))$$

With the constraint:

 $0 \le x \le 2\pi$

In MATLAB:

fitnessfcn = @(x)[sin(x),cos(x)];
nvars = 1;
lb = 0;
ub = 2*pi;
[x, fval] = gamultiobj(fitnessfcn,nvars,[],[],[],[],lb,ub);

Pareto Front

References

- MATLAB Documentation
 - Global Optimization Toolbox.
 URL: <u>https://it.mathworks.com/help/gads/</u>
 - Genetic Algorithm for Mono-objective Optimization. URL: <u>https://it.mathworks.com/help/gads/ga.html</u>
 - Genetic Algorithm for Multi-objective Optimization.
 URL: <u>https://it.mathworks.com/help/gads/gamultiobj.html</u>
- Zbigniew Michalewicz and Girish Nazhiyath, "Genocop III: A Coevolutionary Algorithm for Numerical Optimization Problems with Nonlinear Constraints". URL: https://cs.adelaide.edu.au/~zbyszek/Papers/p24.pdf

• Deb, Kalyanmoy. "Multi-Objective Optimization Using Evolutionary

Algorithms". Chichester, England: John Wiley & Sons, 2001.

