
Bioinformatica Avanzata

Genetic Algorithms for Multiple Sequence Alignment
(with MATLAB examples)

Dr. Nicola Altini, Ph.D. Student Prof. Eng. Vitoantonio Bevilacqua, Ph.D.

Dipartimento di Ingegneria Elettrica e dell’Informazione

Corso di Laurea Magistrale in Ingegneria dei Sistemi Medicali

Politecnico di Bari

Anno Accademico 2019/2020

Multiple Sequence Alignment
• A multiple sequence alignment (MSA) is a sequence alignment of

three or more biological sequences, generally protein, DNA, or RNA.
In many cases, the input set of query sequences are assumed to have
an evolutionary relationship by which they share a linkage and are
descended from a common ancestor.

• From the resulting MSA, sequence homology can be inferred and
phylogenetic analysis can be conducted to assess the sequences'
shared evolutionary origins. Multiple sequence alignment is often
used to assess sequence conservation of protein domains, tertiary
and secondary structures, and even individual amino acids or
nucleotides.

Multiple Sequence Alignment

Visual depictions of the
alignment as in the image at
right illustrate mutation
events such as point
mutations (single amino acid
or nucleotide changes) that
appear as differing characters
in a single alignment column,
and insertion or deletion
mutations (indels or gaps)
that appear as hyphens in one
or more of the sequences in
the alignment.

Multiple Sequence Alignment
• Multiple sequence alignment also refers to the process of aligning

such a sequence set. Because three or more sequences of biologically
relevant length can be difficult and are almost always time-consuming
to align by hand, computational algorithms are used to produce and
analyze the alignments.

• MSAs require more sophisticated methodologies than pairwise
alignment because they are more computationally complex. Most
multiple sequence alignment programs use heuristic methods rather
than global optimization because identifying the optimal alignment
between more than a few sequences of moderate length is
prohibitively computationally expensive.

Mathematical Definition
• Given 𝑚 sequences 𝑆𝑖 , 𝑖 = 1, … ,𝑚 similar to the form below:

𝑆 ≔

𝑆1 = 𝑆11, 𝑆12, … , 𝑆1𝑛1
𝑆2 = 𝑆21, 𝑆22, … , 𝑆2𝑛2

…
𝑆𝑚 = 𝑆𝑚1, 𝑆𝑚2, … , 𝑆𝑚𝑛𝑚

• We want to obtain 𝑚 modified sequences 𝑆′𝑖, with the following requirements:

• All these sequence must conform to the length 𝐿 ≥ max 𝑙𝑒𝑛𝑔𝑡ℎ(𝑆𝑖) 𝑖 = 1, … ,𝑚}

• No column can be made of only gaps

• The mathematical form of an MSA of the sequence set 𝑆 is:

𝑆′ ≔

𝑆′1 = 𝑆′11, 𝑆′12, … , 𝑆′1𝐿
𝑆′2 = 𝑆′21, 𝑆′22, … , 𝑆′2𝐿

…
𝑆′𝑚 = 𝑆′𝑚1, 𝑆′𝑚2, … , 𝑆′𝑚𝐿

Given an 𝑆’𝑖, it is possible to obtain 𝑆𝑖 by removing all the gaps.

Mathematical Definition
• Definition. Multiple alignment.

• A multiple (global) alignment of 𝑘 sequences, is an assignment of gap
symbols “−” into those sequences, or at their ends. The 𝑘 resulting
strings are placed one above the other so that every character or gap
symbol in either string is opposite a unique character or a unique gap
symbol in the other string. It can be represented as a 𝑐 × 𝑘 matrix,
for some value of 𝑐, the 𝑖th row containing the 𝑖th sequence and
(interspersed) gap symbols.

• From a biological perspective, a multiple alignment represents a
hypothesis about homology of individual positions within the aligned
sequences.

Example

ATTCCG-A

--TCCGTA

AAACCG--

-TTCC-A-

-GACCTT-

ATTCCGA

TCCGTA

AAACCG

TTCCA

GACCTT

MSA

Objective Function: 96

Needleman–Wunsch algorithm
• The Needleman–Wunsch algorithm is an algorithm used in bioinformatics

to align protein or nucleotide sequences. It was one of the first applications
of dynamic programming to compare biological sequences. The algorithm
was developed by Saul B. Needleman and Christian D. Wunsch and
published in 1970.

• The algorithm essentially divides a large problem (e.g. the full sequence)
into a series of smaller problems, and it uses the solutions to the smaller
problems to find an optimal solution to the larger problem.

• It is also sometimes referred to as the optimal matching algorithm and the
global alignment technique. The Needleman–Wunsch algorithm is still
widely used for optimal global alignment, particularly when the quality of
the global alignment is of the utmost importance. The algorithm assigns a
score to every possible alignment, and the purpose of the algorithm is to
find all possible alignments having the highest score.

Needleman–Wunsch algorithm

BLOSUM
• The BLOSUM (BLOcks SUbstitution Matrix) matrix is a substitution matrix

used for sequence alignment of proteins. BLOSUM matrices are used to
score alignments between evolutionarily divergent protein sequences.
They are based on local alignments. BLOSUM matrices were first
introduced in a paper by Steven Henikoff and Jorja Henikoff.

• They scanned the BLOCKS database for very conserved regions of protein
families (that do not have gaps in the sequence alignment) and then
counted the relative frequencies of amino acids and their substitution
probabilities.

• Then, they calculated a log-odds score for each of the 210 possible
substitution pairs of the 20 standard amino acids. All BLOSUM matrices are
based on observed alignments; they are not extrapolated from
comparisons of closely related proteins like the PAM Matrices.

BLOSUM62
Entries for the BLOSUM62 matrix at a scale of ln(2)/2.0.

A R N D C Q E G H I L K M F P S T W Y V B J Z X *

A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 -2 -1 -1 -1 -4

R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 -1 -2 0 -1 -4

N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 4 -3 0 -1 -4

D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 4 -3 1 -1 -4

C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -1 -3 -1 -4

Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 0 -2 4 -1 -4

E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 1 -3 4 -1 -4

G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -1 -4 -2 -1 -4

H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3 0 -3 0 -1 -4

I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 -3 3 -3 -1 -4

L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1 -4 3 -3 -1 -4

K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2 0 -3 1 -1 -4

M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1 -3 2 -1 -1 -4

F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1 -3 0 -3 -1 -4

P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 -2 -3 -1 -1 -4

S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2 0 -2 0 -1 -4

T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0 -1 -1 -1 -1 -4

W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3 -4 -2 -2 -1 -4

Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1 -3 -1 -2 -1 -4

V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 -3 2 -2 -1 -4

B -2 -1 4 4 -3 0 1 -1 0 -3 -4 0 -3 -3 -2 0 -1 -4 -3 -3 4 -3 0 -1 -4

J -1 -2 -3 -3 -1 -2 -3 -4 -3 3 3 -3 2 0 -3 -2 -1 -2 -1 2 -3 3 -3 -1 -4

Z -1 0 0 1 -3 4 4 -2 0 -3 -3 1 -1 -3 -1 0 -1 -2 -2 -2 0 -3 4 -1 -4

X -1 -4

* -4 1

Computational Cost
• The extension of pairwise alignment algorithms such as Needleman–

Wunsch or Smith–Waterman to more than two sequences are
straightforward, but their cost increases exponentially with 𝑘 (where
𝑘 is the number of sequences).

• This fact means that there is an exponential cost in the number of
sequences being aligned, limiting the use of these algorithms to very
few sequences.

• Computational cost for two sequences of length 𝑛: 𝑂 𝑛2

• Computational cost for 𝑘 sequences of length 𝑛: 𝑂 𝑛𝑘

• The cost is exponential in 𝑘

• To find the global optimum for n sequences this way has been shown
to be an NP-complete problem.

Genetic Algorithms for MSA
• Genetic algorithms, has been used for MSA production in an attempt

to broadly simulate the hypothesized evolutionary process that gave
rise to the divergence in the query set.

• The method works by breaking a series of possible MSAs into
fragments and repeatedly rearranging those fragments with the
introduction of gaps at varying positions.

• A general objective function is optimized during the simulation, most
generally the "sum of pairs" maximization function introduced in
dynamic programming-based MSA methods.

• A technique for protein sequences has been implemented in the
software program SAGA (Sequence Alignment by Genetic Algorithm)
and its equivalent in RNA is called RAGA.

Genetic Algorithms for MSA
• Objective Function

• Sum of pairs (SP) score

• Crossover Operation
• Take some sequences from parent 1

• Take some sequences from parent 2

• Merge and get child

• Mutation Operation
• Adding or removing random gaps from child

• Util operations
• Gaps padding

• Gaps columns deletion

Algorithm Overview - SAGA
• Population made of alignments. Population size is constant.

• Generation zero 𝐺0 is randomly created.

• To go from one generation to the next, children are derived from
parents using natural selection, based on fitness of parents measured
by the OF.

• Child can be either the result of a crossover (mixing the contents of
the two parents) or a mutation (modifying a single parent).

• Each operator has a probability of being chosen which is dynamically
optimized during the execution.

• Repeat these steps iteratively.

Algorithm Overview
• Initialization:

• PrepareInput()

• InitializePop()

• Optimization:
• While generation < numGenerations

• EvalFunction()

• SelectParents()

• ApplyCrossover()

• ApplyMutation()

• GapsPadding()

• GapsColumnsDeletion()

• CheckNoChanges()

• UpdatePopulation()

Initializing population
➢Compute pairwise alignments between all the original pairs.

➢Random sample these alignments to create the desired number of chromosomes.

"--TCCGTACAGTC-G-CTAGCAT-CGAT---------"

" |||| ||||| | ||| |:| ||| "

"ATTCCG--CAGTCGGACTA-CGTACGA----------"

"TCCGTACAGTCGCTAGCATCGAT"

"ATTCCGCAGTCGGACTACGTACGA"

"--TCCGTACAGTC-G-CTAGCAT-CGAT---------"

1. Select two sequences

2. Compute alignment between the
sequences (for instance, with NW
algorithm).

3. Take the first row of the alignment as a
chromosome for the initial population

{["ATTCCGCAGTCGGACTACGTACGA--------"]}

{["TCCGTACAGTCGCTAGCATCGAT---------"]}

{["AAACCGCGCGCGTCGTCAGA------------"]}

{["TTCCACAGTCGATCGCA---------------"]}

{["GACCTTCGATCGACGACGATCGGCATGAGTCA"]}

{["CAGTCAGCTACGACTGAT--------------"]}

{["CAGCTAGCTTCAGTCAG---------------"]}

{["CGACGACTACGCGTA-----------------"]}

Sequences from original file

Initializing population
Chromosome 3 on 8:

["ATTCCG-A"]

["-TCCGTA-"]

["AAACCG--"]

["-TTCCA--"]

["GACCTT--"]

Chromosome 4 on 8:

["ATTCCG-A-"]

["--TCCGTA-"]

["AAACCG---"]

["-TTCCA---"]

["GACCTT---"]

Chromosome 5 on 8:

["ATTCCGA-"]

["-TCCGTA-"]

["AAACCG--"]

["TTCCA---"]

["GACCTT--"]

Input Sequences

{["ATTCCGA"]}

{["TCCGTA-"]}

{["AAACCG-"]}

{["TTCCA--"]}

{["GACCTT-"]}

Chromosome 1 on 8:

["ATTCCGA--"]

["--TCCGTA-"]

["AAACCG---"]

["TTCCA----"]

["GACCTT---"]

Chromosome 2 on 8:

["ATTCCG-A-"]

["-TCCGTA--"]

["AAACCG---"]

["TTCCA----"]

["GACCTT---"]

Chromosome 6 on 8:

["ATTCCGA-"]

["-TCCGTA-"]

["AAACCG--"]

["TTCCA---"]

["GACCTT--"]

Chromosome 7 on 8:

["ATTCCGA-"]

["-TCCGTA-"]

["AAACCG--"]

["-TTCCA--"]

["GACCTT--"]

Chromosome 8 on 8:

["ATTCCGA-"]

["-TCCGTA-"]

["AAACCG--"]

["-TTCCA--"]

["GACCTT--"]

Objective Function - SAGA
• Global cost made up of:

• Substitution cost (cost to each pair of aligned residues)
• Gaps cost

• Each pair of sequences is given a weight related to their similarity to the
other pairs.

• Variations:
i. Using different sets of sequence weights
ii. Different sets of substitution costs (PAM or BLOSUM tables)
iii. Different schemas for scoring of gaps

• The cost for a multiple alignment 𝑆 is then:

𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝐶𝑜𝑠𝑡 𝑆 =

𝑖=2

𝑁

𝑗=1

𝑖−1

𝑊𝑖𝑗𝐶𝑜𝑠𝑡(𝑆𝑖 , 𝑆𝑗)

Objective Function
• The objective function to maximize is the sum of all pairwise scores

calculated between the sequences in a chromosome.

• Pairwise scores are calculated using Needleman–Wunsch algorithm.

Objective Function

34

["ATTCCGA-"]

["--TCCGTA"]

["AAACCG--"]

["TTCCA---"]

["GACCTT--"]

["ATTCCGA-"]

["-TCCGTA-"]

["AAACCG--"]

["TTCCA---"]

["GACCTT--"]

Objective Function

34.25

Objective Function

function [sum_score] = eval_function(chromosome)

sum_score = 0;

for i = 2:size(chromosome,1)

% Compute pairwise scores

for j = 1:(i-1)

[curr_score, ~] = nwalign(chromosome{i,1}, chromosome{j,1}, ...

'ScoringMatrix', 'BLOSUM62', ...

'GapOpen', 1, ...

'ExtendGap', 0.5);

sum_score = sum_score + curr_score;

end

end

end

Crossover Operation

Parent 1:

["ATTCCGA--"]

["--TCCGTA-"]

["AAACCG---"]

["-TTCCA---"]

["GACCTT---"]

Parent 2:

["ATTCCGA-"]

["-TCCGTA-"]

["AAACCG--"]

["TTCCA---"]

["GACCTT--"]

Child:

["ATTCCGA--"]

["--TCCGTA-"]

["AAACCG--"]

["TTCCA---"]

["GACCTT--"]

Gaps padding

Child:

["ATTCCGA--"]

["--TCCGTA-"]

["AAACCG---"]

["TTCCA----"]

["GACCTT---"]

Child:

["ATTCCGA--"]

["--TCCGTA-"]

["AAACCG--"]

["TTCCA---"]

["GACCTT--"]

Gaps columns deletion

Child:

["ATTCCGA-"]

["--TCCGTA"]

["AAACCG--"]

["TTCCA---"]

["GACCTT--"]

Child:

["ATTCCGA--"]

["--TCCGTA-"]

["AAACCG---"]

["TTCCA----"]

["GACCTT---"]

Mutation Operation

Child before mutation:

["ATTCCGA--"]

["--TCCGTA-"]

["AAACCG---"]

["TTCCA----"]

["GACC-TT--"]

Child after mutation:

["ATTCCGA--"]

["--TCCGTA-"]

["AAACCG----"]

["TTCCA----"]

["GACC-TT--"]

Child after gaps padding:

["ATTCCGA---"]

["--TCCGTA--"]

["AAACCG----"]

["TTCCA-----"]

["GACC-TT---"]

Child after gaps deletion:

["ATTCCGA-"]

["--TCCGTA"]

["AAACCG--"]

["TTCCA---"]

["GACC-TT-"]

Optimization parameters
• chromosomes

• The number of chromosomes which will compose the population

• generations
• The number of (maximum) generations for which the algorithm will try to

optimize the objective function.

• min_num_gen
• The minimum number of generations before checking if there are no more

progresses.

• crossover_prob
• The probability for a crossover to happen.

• mutation_rate
• The probability for a mutation to happen.

Update population
• Example: population of 4 chromosomes.

• Probability of crossover: 0.5
• Probability of mutation: 0.05

Chromosome 1
Fitness: 100Generation 𝒕

Chromosome 2
Fitness: 95

Chromosome 3
Fitness: 60

Chromosome 4
Fitness: 40

Child 1
Fitness: 98

Child 2
Fitness: 80

Generation 𝒕 + 𝟏
Chromosome 1

Fitness: 100
Chromosome 2

Fitness: 95

Child 1
Fitness: 98

Child 2
Fitness: 80

Stopping heuristic
• Calculate the variance in a sample of last best fitness values.

• If variance is below a threshold, then assess that there is no more
progress in the optimization process and stop the algorithm.

last_best_values

35.2500

35.2500

35.2500

35.2500

35.2500

35.2500

35.2500

35.2500

35.2500

var(last_best_values) = 0
Optimization

stop

Optimization Process

Optimization Result
• Results of the optimization:

Best chromosome

["ATTCCGA-"]

["--TCCGTA"]

["AAACCG--"]

["TTCCA---"]

["GA-CC-TT"]

Fitness Function

38.50

Original sequences

["ATTCCGA"]

["TCCGTA"]

["AAACCG"]

["TTCCA"]

["GACCTT"]

References
• Github

• Multiple Sequence Alignment - Genetic Algorithm
URL: https://github.com/filipefalcaos/msa-ga

• MATLAB Documentation
• Needleman-Wunsch algorithm.

URL: https://it.mathworks.com/help/bioinfo/ref/nwalign.html

• Wikipedia
• Multiple Sequence Alignment.

URL: https://en.wikipedia.org/wiki/Multiple_sequence_alignment

• Needleman-Wunsch algorithm.
URL: https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_algorithm

• BLOSUM.
URL: https://en.wikipedia.org/wiki/BLOSUM

• Notredame, C., & Higgins, D. G. (1996). SAGA: sequence alignment by genetic algorithm. Nucleic acids research, 24(8),
1515-1524.

• Notredame, C., O'Brien, E. A., & Higgins, D. G. (1997). RAGA: RNA sequence alignment by genetic algorithm. Nucleic acids
research, 25(22), 4570-4580.

• Cristianini, N., & Hahn, M. W. (2006). Introduction to computational genomics: a case studies approach. Cambridge
University Press.

https://github.com/filipefalcaos/msa-ga
https://it.mathworks.com/help/bioinfo/ref/nwalign.html
https://en.wikipedia.org/wiki/Multiple_sequence_alignment
https://en.wikipedia.org/wiki/Needleman%E2%80%93Wunsch_algorithm
https://en.wikipedia.org/wiki/BLOSUM

