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Model Selection
• Model selection is the task of selecting a statistical model from a set

of candidate models, given data. In the simplest cases, a pre-existing
set of data is considered.

• However, the task can also involve the design of experiments such
that the data collected is well-suited to the problem of model
selection.

• Given candidate models of similar predictive or explanatory power,
the simplest model is most likely to be the best choice (Occam's
razor).



Training, validation, and test sets
• The model is initially fit on a training dataset, that is a set of examples

used to fit the parameters (e.g. weights of connections between
neurons in artificial neural networks) of the model. The model (e.g. a
neural net) is trained on the training dataset using a supervised
learning method (e.g. gradient descent).
• Successively, the fitted model is used to predict the responses for the

observations in a second dataset called the validation dataset. The
validation dataset provides an unbiased evaluation of a model fit on
the training dataset while tuning the model's hyperparameters.
• Finally, the test dataset is a dataset used to provide an unbiased

evaluation of a final model fit.



Training, validation, and test sets



Training, validation, and test sets

function [x_train, y_train, x_test, y_test] = train_test_split(x,y,split_percentage)
n_features = size(x,1);
temp = [x;y];
rng(0)
p = randperm(size(temp,2)); % Genero un vettore di permutazioni casuali

train_size = floor(size(temp,2)*split_percentage); % Percentuale di dati per il primo subset
p_train = p(1:train_size); % Seleziono la percentuale di indici per il primo subset
p_test = p(train_size+1:end); % Seleziono la percentuale di indici per il secondo subset

% Divisione del dataset
x_train = temp(1:n_features,p_train);
y_train = temp(n_features+1,p_train);

x_test = temp(1:n_features,p_test);
y_test = temp(n_features,p_test);

end



Training, validation, and test sets

split_percentage = 0.8;
[x_trainval, y_trainval, x_test, y_test] = train_test_split(x,y,split_percentage);
[x_train, y_train, x_val, y_val] = train_test_split(x_trainval, y_trainval, split_percentage);

Example:
Size dataset = 100

Size TrainVal set = 80
Size Train    set = 64
Size Val      set = 16

Size Test     set = 20



Bias and Variance
• The bias–variance tradeoff is the property of a set of predictive

models whereby models with a lower bias in parameter estimation
have a higher variance of the parameter estimates across samples,
and vice versa.
• The bias–variance decomposition is a way of analyzing a learning

algorithm's expected generalization error with respect to a particular
problem as a sum of three terms, the bias, variance, and a quantity
called the irreducible error, resulting from noise in the problem itself.



Bias and Variance
• The bias error is an error from erroneous assumptions in the learning

algorithm. High bias can cause an algorithm to miss the relevant
relations between features and target outputs (underfitting).
• The variance is an error from sensitivity to small fluctuations in the

training set. High variance can cause an algorithm to model the
random noise in the training data, rather than the intended outputs
(overfitting).



Bias and Variance
• Supervised learning problem: find 𝑓∗(𝑥) which approximates true underlying function

𝑦 = 𝑓 𝑥 , where 𝑥 is the independent variable and 𝑦 is the dependent variable (target

variable).

• Whichever function 𝑓∗(𝑋) we choose, we can decompose its expected error on an

unseen examples as follows:

𝐸 𝑦 − 𝑓∗ 𝑥 + = 𝐸 𝑓 𝑥 + 𝜖 − 𝑓∗ 𝑥 + = 𝐵𝑖𝑎𝑠 𝑓∗ 𝑥 + + 𝑉𝑎𝑟 𝑓∗ 𝑥 + 𝜎+

• Where

𝐵𝑖𝑎𝑠 𝑓∗ 𝑥 = 𝐸 𝑓∗ 𝑥 − 𝐸 𝑓 𝑥

𝑉𝑎𝑟 𝑓∗ 𝑥 = 𝐸 𝑓∗ 𝑥 + − 𝐸 𝑓∗ 𝑥 +

𝜎+ is the irreducible error



Bias and Variance



Bias and Variance



Polynomial Regression
• Model capacity is represented by the grade of the polynomial.
• The higher is the grade, the higher is the model capacity. This means

that the error on the train set generally will be reduced when we
increase the grade. The error on the vail set may increase, since we
are also increasing the variance of the model.
• How can we determine which is the optimal grade for a polynomial

regression?
• We use a train set to fit the model parameters (polyniamial coefficients).
• We use a validation set to fit the model hyperparameters (grade of the

polynomial).
• We obtain a final unbiased estimate of the generalization capability of our

model on a hold-out test set.



Polynomial Regression - Dataset



Train, Validation, Test sets

ValidationTrain Test



Hyperparameters Tuning
• Possible algorithm:
• Initialize a list of polynomials and a list of error values
• Iterate on grade between 1 and desired max value:
• Calculate fitting of polynomial at current grade
• Calculate output of fitted polynomial
• Measure validation error

• Pick the polynomial with the lowest validation error
• Get a final and unbiased estimate of the model by measuring the 

error on a hold-out test set



Hyperparameters Tuning

Polynomial of grade 1 or 2 have no sufficient capacity to handle the current dataset.



Hyperparameters Tuning

Polynomial of grade 3 has the right capacity to fit the data.
Polynomial of higher grades lead in overfitting and increased variance.
We prefer polynomial of grade 3 because it is the simplest model which can get proper fitting 
(Occam’s razor).


