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The Curse of Dimensionality
• The curse of dimensionality refers to various phenomena that arise

when analyzing and organizing data in high-dimensional spaces (often
with hundreds or thousands of dimensions) that do not occur in low-
dimensional settings such as the three-dimensional physical space of
everyday experience. The expression was coined by Richard E.
Bellman when considering problems in dynamic programming.
• Dimensionality reduction is the process of reducing the number of

random variables under consideration by obtaining a set of principal
variables. Approaches can be divided into feature selection and
feature extraction.



The Curse of Dimensionality
• Cursed phenomena occur in domains such as numerical analysis,

sampling, combinatorics, machine learning, data mining and
databases.
• The common theme of these problems is that when the

dimensionality increases, the volume of the space increases so fast
that the available data become sparse. This sparsity is problematic for
any method that requires statistical significance. In order to obtain a
statistically sound and reliable result, the amount of data needed to
support the result often grows exponentially with the dimensionality.
• Also, organizing and searching data often relies on detecting areas

where objects form groups with similar properties; in high
dimensional data, however, all objects appear to be sparse and
dissimilar in many ways, which prevents common data organization
strategies from being efficient.



Dimensionality Reduction
• Feature selection approaches try to find a subset of the input

variables (also called features or attributes). The three strategies are:
the filter strategy (e.g. information gain), the wrapper strategy (e.g.
search guided by accuracy), and the embedded strategy (selected
features add or are removed while building the model based on
prediction errors).
• Feature projection (also called Feature extraction) transforms the

data in the high-dimensional space to a space of fewer dimensions.
The data transformation may be linear, as in principal component
analysis (PCA), but many nonlinear dimensionality reduction
techniques also exist. For multidimensional data, tensor
representation can be used in dimensionality reduction through
multilinear subspace learning.



PCA
• Principal component analysis (PCA) is a statistical procedure that

uses an orthogonal transformation to convert a set of observations of
possibly correlated variables (entities each of which takes on various
numerical values) into a set of values of linearly uncorrelated
variables called principal components.
• This transformation is defined in such a way that the first principal

component has the largest possible variance (that is, accounts for as
much of the variability in the data as possible), and each succeeding
component in turn has the highest variance possible under the
constraint that it is orthogonal to the preceding components.
• The resulting vectors (each being a linear combination of the

variables and containing 𝑛 observations) are an uncorrelated
orthogonal basis set. PCA is sensitive to the relative scaling of the
original variables.



PCA – MATLAB 
coeff = pca(X)

• returns the principal component coefficients, also known as loadings,
for the 𝑛-by-𝑝 data matrix X.
• Rows of X correspond to observations and columns correspond to

variables. There are 𝑛 observations and 𝑝 variables.
• The coefficient matrix is 𝑝-by-𝑝. Each column of coeff contains

coefficients for one principal component, and the columns are in
descending order of component variance. By default, pca centers the
data and uses the singular value decomposition (SVD) algorithm.



PCA – MATLAB 
• [coeff,score,latent] = pca(X) also returns the principal

component scores in score and the principal component variances in
latent.
• Principal component scores are the representations of X in the

principal component space. Rows of score correspond to
observations, and columns correspond to components.
• The principal component variances are the eigenvalues of the

covariance matrix of X.



Bi-plot
• Biplots are a type of exploratory graph used in statistics, a

generalization of the simple two-variable scatterplot. A biplot allows
information on both samples and variables of a data matrix to be
displayed graphically.
• Samples are displayed as points while variables are displayed either

as vectors, linear axes or nonlinear trajectories. In the case of
categorical variables, category level points may be used to represent
the levels of a categorical variable.
• A generalised biplot displays information on both continuous and

categorical variables.



PCA and bi-plot with MATLAB
Visualize both the orthonormal principal component coefficients for each variable and the principal
component scores for each observation in a single plot.

[coeff,score,latent] = pca(ingredients);
biplot(coeff(:,1:2),'scores',score(:,1:2),'varlabels',{'v_1','v_2','v_3','v_4'});



t-SNE
• It is a nonlinear dimensionality reduction technique well-suited for

embedding high-dimensional data for visualization in a low-
dimensional space of 2 or 3 dimensions.
• Specifically, it models each high-dimensional object by a 2D or 3D

point in such a way that similar objects are modeled by nearby points
and dissimilar objects are modeled by distant points with high
probability.



t-SNE
• The t-SNE algorithm comprises two main stages:

1. t-SNE constructs a probability distribution over pairs of high-dimensional
objects in such a way that similar objects have a high probability of being
picked while dissimilar points have an extremely small probability of being
picked.

2. t-SNE defines a similar probability distribution over the points in the low-
dimensional map, and it minimizes the Kullback–Leibler divergence
between the two distributions with respect to the locations of the points in
the map.

• Hyper-parameter: perplexity
• It is basically the effective number of neighbors for any point, and t-SNE works

relatively well for any value between 5 and 50. Larger perplexities will take
more global structure into account, whereas smaller perplexities will make
the embeddings more locally focused.



t-SNE – MATLAB 
Y = tsne(X) 

returns a matrix of two-dimensional embeddings of the high-
dimensional rows of X.
X - Data points
specified as an n-by-m matrix, where each row is one m-dimensional 
point.
Y — Embedded points
returned as an n-by-NumDimensions matrix. Each row represents 
one embedded point. 



t-SNE – MATLAB 
• t-SNE algorithm:
• The 'exact' algorithm optimizes the Kullback-Leibler divergence of

distributions between the original space and the embedded space.
• The 'barneshut' algorithm performs an approximate optimization that is

faster and uses less memory when the number of data rows is large.
• Examples of distance metrics you can use in MATLAB implementation

of t-SNE are:
• 'euclidean' — Euclidean distance.
• 'chebychev' — Chebychev distance, which is the maximum coordinate

difference.
• 'mahalanobis' — Mahalanobis distance, computed using the positive

definite covariance matrix nancov(X).
• 'cosine' — 1 minus the cosine of the included angle between

observations (treated as vectors).



t-SNE in MATLAB



t-SNE in MATLAB



t-SNE in MATLAB
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